Free access
Issue
ESAIM: COCV
Volume 11, Number 2, April 2005
Page(s) 266 - 284
DOI http://dx.doi.org/10.1051/cocv:2005007
Published online 15 March 2005
  1. M. Bellieud, Homogenization of evolution problems in a fiber reinforced structure. J. Convex Anal. 11 (2004) 363–385. [MathSciNet]
  2. M. Bellieud and G. Bouchitté, Homogenization of elliptic problems in a fiber reinforced structure. Non local effects. Ann. Scuola Norm. Sup. Cl. Sci. IV 26 (1998) 407–436.
  3. M. Bellieud and I. Gruais, Homogénéisation d'une structure élastique renforcée de fibres très rigides. Effets non locaux. C. R. Math., Problèmes mathématiques de la mécanique 337 (2003) 493–498.
  4. M. Bellieud and I. Gruais, Homogenization of an elastic material reinforced by very stiff or heavy fibers. Non local effects. Memory effects. J. Math. Pures Appl. 84 (2005) 55–96. [CrossRef] [MathSciNet]
  5. H. Brezis, Analyse fonctionnelle. Masson, Paris (1983).
  6. G. Dal Maso, An introduction to Formula -Convergence. Progress Nonlinear Differential Equations Appl., Birkhäuser, Boston (1993).
  7. E.Y. Khruslov, Homogenized models of composite media. Progress Nonlinear Differential Equations Appl., Birkhäuser (1991).
  8. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris 1 (1968).
  9. U. Mosco, Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123 (1994) 368–421. [CrossRef] [MathSciNet]
  10. G. Panasenko, Multicomponent homogenization of the vibration problem for incompressible media with heavy and rigid inclusions. C. R. Acad. Sci. Paris I 321 (1995) 1109–1114.