Free access
Issue
ESAIM: COCV
Volume 11, Number 3, July 2005
Page(s) 426 - 448
DOI http://dx.doi.org/10.1051/cocv:2005013
Published online 15 July 2005
  1. F. Ammar-Khodja, A. Benabdallah, C. Dupaix and I. Kostine, Controllability to the trajectories of phase-field models by one control force. SIAM J. Control. Opt. 42 (2003) 1661–1680. [CrossRef] [MathSciNet]
  2. F. Ammar-Khodja, A. Benabdallah and C. Dupaix, Controllability of some reaction-diffusion models by one control force. To appear.
  3. S. Anita and V. Barbu, Local exact controllability of a reaction-diffusion system. Diff. Integral Equ. 14 (2001) 577–587.
  4. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [CrossRef] [MathSciNet]
  5. V. Barbu, Local controllability of the phase field system. Nonlinear Analysis 50 (2002) 363–372. [CrossRef] [MathSciNet]
  6. G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Diff. Equ. 20 (1995) 335–356. [CrossRef] [MathSciNet]
  7. A. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea. Lect. Notes Ser. 34 (1996).
  8. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 583–616.
  9. O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, AMS 23 (1968).
  10. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag New York (1983).
  11. T.I. Seidman, How fast are violent controls? Math. Control Signals Syst. 1 (1988) 89–95. [CrossRef]
  12. T.I. Seidman and J. Yong, How fast are violent controls, II? Math Control Signals Syst. 9 (1997) 327–340. [CrossRef]
  13. J. Zabczyk, Mathematical Control Theory: An Introduction. Birkhäuser (1992).