Free access
Issue
ESAIM: COCV
Volume 11, Number 3, July 2005
Page(s) 473 - 486
DOI http://dx.doi.org/10.1051/cocv:2005015
Published online 15 July 2005
  1. E. Bisognin, V. Bisognin and G.P. Menzala, Exponential stabilization of a coupled system of Korteweg-de Vries Equations with localized damping. Adv. Diff. Eq. 8 (2003) 443–469.
  2. J. Coron and E. Crepéau, Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef]
  3. B. Dehman, G. Lebeau and E. Zuazua, Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36 (2003) 525–551.
  4. J.A. Gear and R. Grimshaw, Weak and strong interaction between internal solitary waves. Stud. Appl. Math. 70 (1984) 235–258. [MathSciNet]
  5. L. Hörmander, Linear partial differential operators. Springer Verlag, Berlin/New York (1976)
  6. L. Hörmander, The analysis of linear partial differential operators (III-IV). Springer-Verlag, Berlin (1985).
  7. O. Yu Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, G. Chen et al. Eds. Marcel-Dekker (2001) 113–137.
  8. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Stud. Appl. Math. Adv., in Math. Suppl. Stud. 8 (1983) 93–128.
  9. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a retangular canal, and on a new type of long stacionary waves. Philos. Mag. 39 (1895) 422–423.
  10. S.N. Kruzhkov and A.V. Faminskii, Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation. Math. URSS Sbornik 38 (1984) 391–421. [CrossRef]
  11. J. Lions, Contrôlabilité exacte, perturbations et stabilization de systèmes distribué, Tome 1, Contrôlabilité exacte, Colletion de Recherches en Mathématiques Appliquées, Masson, Paris 8 (1988).
  12. G.P. Menzala, C.F. Vasconcellos and E. Zuazua, Stabilization of the Korteweg-de Vries equation with localized damping. Quarterly Appl. Math. LX (2002) 111–129.
  13. G.P. Menzala and E. Zuazua, Decay rates for the von Kàrmàn system of thermoelastic plates. Diff. Int. Eq. 11 (1998) 755–770.
  14. J. Rauch and M. Taylor, Exponential decay of solutions to symmetric hyperbolic equations in bounded domains. Indiana J. Math. 24 (1974) 79–86. [CrossRef] [MathSciNet]
  15. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bonded domain. ESAIM: COCV 2 (1997) 33–55. [CrossRef] [EDP Sciences]
  16. A. Ruiz, Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures Appl. 71 (1992) 455–467. [MathSciNet]
  17. J.C. Saut and B. Scheurer, Unique Continuation for some evolution equations. J. Diff. Equations 66 (1987) 118–139. [CrossRef] [MathSciNet]
  18. J. Simon, Compact sets in the space Lp(0,T;B). Annali di Matematica Pura ed Appicata CXLVI (IV) (1987) 65–96.
  19. F. Trêves, Linear Partial Differential Equations. Gordon and Breach, New York/London/Paris (1970).
  20. B.Y. Zhang, Unique continuation for the Korteweg-de Vries equation. SIAM J. Math. Anal. 23 (1992) 55–71. [CrossRef] [MathSciNet]
  21. B.Y. Zhang, Exact boundary controllability of the Kortewed-de Vries equation. SIAM J. Control Opt. 37 (1999) 543–565. [CrossRef] [MathSciNet]
  22. E. Zuazua, Contrôlabilité exacte de quelques modèles de plaques en un temps arbitrairement petit, Appendix I in [11] 465–491.
  23. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping. Comm. Partial Diff. Eq. 15 (1990) 205–235. [CrossRef] [MathSciNet]
  24. C. Zuily, Uniqueness and nonuniqueness in the Cauchy problem. Birkhäuser, Progr. Math. 33 (1983).