 W. Arendt and C.J.K. Batty, Tauberian theorems and stability of oneparameter semigroups. Trans. Am. Math. Soc. 306 (1988) 837–852. [CrossRef] [MathSciNet]
 H. Brezis, Analyse fonctionnelle. Théorie et applications. Masson, Paris (1983).
 M. Bruneau, Ph. Herzog, J. Kergomard and J.D. Polack, General formulation of the dispersion equation in bounded viscothermal fluid, and application to some simple geometries. Wave Motion 11 (1989) 441–451. [CrossRef]
 T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. Oxford Lecture Series in Mathematics and its Applications 13 (1998).
 F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedback. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 485–515.
 R.F. Curtain and H. Zwart, An introduction to infinitedimensional linear systems theory. Texts Appl. Math. 21 (1995).
 G. Dauphin, D. Heleschewitz and D. Matignon, Extended diffusive representations and application to nonstandard oscillators, in Proc. of Math. Theory on Network Systems (MTNS), Perpignan, France (2000).
 R. Dautray and J.L. Lions, Mathematical analysis and numerical methods for science and technology, Vol. 5. Springer, New York (1984).
 Z.E.A. Fellah, C. Depollier and M. Fellah, Direct and inverse scattering problem in porous material having a rigid frame by fractional calculus based method. J. Sound Vibration 244 (2001) 3659–3666.
 H. Haddar, T. Hélie and D. Matignon, A WebsterLokshin model for waves with viscothermal losses and impedance boundary conditions: strong solutions, in Proc. of Sixth international conference on mathematical and numerical aspects of wave propagation phenomena, Jyväskylä, Finland (2003) 66–71.
 Th. Hélie, Unidimensional models of acoustic propagation in axisymmetric waveguides. J. Acoust. Soc. Am. 114 (2003) 2633–2647. [CrossRef] [PubMed]
 A.E. Ingham, On Wiener's method in Tauberian theorems, in Proc. London Math. Soc. II 38 (1935) 458–480.
 J. Korevaar, On Newman's quick way to the prime number theorem. Math. Intell. 4 (1982) 108–115. [CrossRef]
 A.A. Lokshin, Wave equation with singular retarded time. Dokl. Akad. Nauk SSSR 240 (1978) 43–46 (in Russian). [MathSciNet]
 A.A. Lokshin and V.E. Rok, Fundamental solutions of the wave equation with retarded time. Dokl. Akad. Nauk SSSR 239 (1978) 1305–1308 (in Russian). [MathSciNet]
 Z.H. Luo, B.Z. Guo and O. Morgul, Stability and stabilization of infinite dimensional systems and applications. Comm. Control Engrg. SpringerVerlag, New York (1999).
 Yu.I. Lyubich and V.Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces. Stud. Math. 88 (1988) 37–42.
 D. Matignon, Stability properties for generalized fractional differential systems. ESAIM: Proc. 5 (1998) 145–158. [CrossRef]
 G. Montseny, Diffusive representation of pseudodifferential timeoperators. ESAIM: Proc. 5 (1998) 159–175. [CrossRef]
 D.J. Newman, Simple analytic proof of the prime number theorem. Am. Math. Mon. 87 (1980) 693–696. [CrossRef]
 J.D. Polack, Time domain solution of Kirchhoff's equation for sound propagation in viscothermal gases: a diffusion process. J. Acoustique 4 (1991) 47–67.
 O.J. Staffans, Wellposedness and stabilizability of a viscoelastic equation in energy space. Trans. Am. Math. Soc. 345 (1994) 527–575. [CrossRef]
 O.J. Staffans, Passive and conservative continuoustime impedance and scattering systems. Part I: Wellposed systems. Math. Control Sig. Syst. 15 (2002) 291–315. [CrossRef]
 G. Weiss, O.J. Staffans and M. Tucsnak, Wellposed linear systems – a survey with emphasis on conservative systems. Internat. J. Appl. Math. Comput. Sci. 11 (2001) 7–33.
 G. Weiss and M. Tucsnak, How to get a conservative wellposed linear system out of thin air. Part I. Wellposedness and energy balance. ESAIM: COCV 9 (2003) 247–273. [CrossRef] [EDP Sciences]
Free access
Issue 
ESAIM: COCV
Volume 11, Number 3, July 2005



Page(s)  487  507  
DOI  http://dx.doi.org/10.1051/cocv:2005016  
Published online  15 July 2005 