Free access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 614 - 632
DOI http://dx.doi.org/10.1051/cocv:2005020
Published online 15 September 2005
  1. K.E. Brenen, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-Value Problems in Differential Algebraic Equations. Classics Appl. Math. SIAM, Philadelphia (1996).
  2. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983). Reprinted as Vol. 5 of Classics Appl. Math. SIAM, Philadelphia (1990).
  3. M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, An Euler-Lagrange inclusion for optimal control problems with state constraints. J. Dynam. Control Syst. 8 (2002) 23–45. [CrossRef]
  4. M.d.R. de Pinho, M.M.A. Ferreira and F.A.C.C. Fontes, Necessary conditions in Euler-Lagrange inclusion form for constrained nonconvex optimal control problems, in Proc. of the 10th Mediterranean Conference on Control and Automation. Lisbon, Portugal (2002).
  5. M.d.R. de Pinho and A. Ilchmann, Weak maximum principle for optimal control problems with mixed constraints. Nonlinear Anal. Theory Appl. 48 (2002) 1179–1196. [CrossRef]
  6. M.d.R. de Pinho and R.B. Vinter, An Euler-Lagrange inclusion for optimal control problems. IEEE Trans. Aut. Control 40 (1995) 1191–1198. [CrossRef] [MathSciNet]
  7. M.d.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations. J. Math. Anal. Appl. 212 (1997) 493–516. [CrossRef] [MathSciNet]
  8. M.d.R. de Pinho, R.B. Vinter and H. Zheng, A maximum principle for optimal control problems with mixed constraints. IMA J. Math. Control Inform. 18 (2001) 189–205. [CrossRef] [MathSciNet]
  9. B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40 (1976) 960–969. [CrossRef] [MathSciNet]
  10. B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control. Nakua, Moscow; the 2nd edition to appear in Wiley-Interscience (1988).
  11. R.T. Rockafellar and B. Wets, Variational Analysis. Springer, Berlin (1998).
  12. R.B. Vinter, Optimal Control. Birkhauser, Boston (2000).