Free access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 542 - 573
DOI http://dx.doi.org/10.1051/cocv:2005018
Published online 15 September 2005
  1. G. Allaire, Homogenization and two scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet]
  2. G. Allaire and C. Conca, Bloch wave homogenization for a spectral problem in fluid-solid structures. Arch. Rational Mech. Anal. 135 (1996) 197–257. [CrossRef] [EDP Sciences] [MathSciNet]
  3. G. Allaire and C. Conca, Boundary layers in the homogenization of a spectral problem in fluid-solid structures. SIAM J. Math. Anal. 29 (1997) 343–379. [CrossRef] [MathSciNet]
  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978).
  5. C. Conca, S. Natesan and M. Vanninathan, Numerical solution of elliptic partial differential equations by Bloch waves method, XVII CEDYA: Congress on differential equations and applications/VII CMA: Congress on applied mathematics, Dep. Mat. Appl., Univ. Salamanca, Salamanca (2001) 63–83.
  6. C. Conca, R. Orive and M. Vanninathan, Bloch approximation in homogenization and applications. SIAM J. Math. Anal. 33 (2002) 1166–1198. [CrossRef] [MathSciNet]
  7. C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures. John Wiley & Sons, New York, and Masson, Paris (1995).
  8. C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57 (1997) 1639–1659. [CrossRef] [MathSciNet]
  9. C. Conca and M. Vanninathan, Fourier approach to homogenization. ESAIM: COCV 8 (2002) 489–511. [CrossRef] [EDP Sciences]
  10. A.P. Cracknell and K.C. Wong, The Fermi surface. Clarendon press, Oxford (1973).
  11. G. Dal maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993).
  12. P. Gérard, Microlocal defect measures. Commun. PDE 16 (1991) 1761–1794. [CrossRef]
  13. P. Gérard, P.A. Markowich, N.J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323–379. [CrossRef] [MathSciNet]
  14. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential operators and Integral functionals. Berlin, Springer-Verlag (1994).
  15. T. Kato, Perturbation theory for linear operators. 2nd edition, Springer-Verlag, Berlin (1980).
  16. F. Murat and L. Tartar, H-Convergence, Topics in the Mathematical Modeling of Composite Materials, A. Charkaev and R. Kohn Eds. PNLDE 31, Birkhäuser, Boston (1997).
  17. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet]
  18. O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and homogenization. North Holland, Amsterdam (1992).
  19. F. Rellich, Perturbation theory of eigenvalue problems. Gordon and Breach science publishers, New York (1969).
  20. M. Roseau, Vibrations in Mechanical systems: Analytical methods and applications. Springer-Verlag, Berlin (1987).
  21. W. Rudin, Functional analysis. 2nd edition, Mc-Graw Hill, New York (1991).
  22. J. Sínchez-Hubert and E. Sínchez-Palencia, Vibration and coupling of continuous systems: asymptotic methods. Springer-Verlag, Berlin (1989).
  23. E. Sínchez-Palencia, Non-homogeneous media and vibration theory. Lect. Notes Phys. 127 (1980).
  24. F. Santosa and W.W. Symes, A dispersive effective medium for wave propagation in periodic composites. SIAM J. Appl. Math. 51 (1991) 984–1005. [CrossRef] [MathSciNet]
  25. S. Sivaji Ganesh and M. Vanninathan, Bloch wave homogenization of scalar elliptic operators. Asymptotic Analysis 39 (2004) 15–44. [MathSciNet]
  26. L. Tartar, H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edin. Sect. A 115 (1990) 193–230.
  27. N. Turbé, Applications of Bloch decomposition to periodic elastic and viscoelastic media. Math. Meth. Appl. Sci. 4 (1982) 433–449. [CrossRef]