Free access
Issue
ESAIM: COCV
Volume 11, Number 4, October 2005
Page(s) 633 - 672
DOI http://dx.doi.org/10.1051/cocv:2005023
Published online 15 September 2005
  1. S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in Formula for an Allen-Cahn system with multiple well potential. Calc. Var. 5 (1997) 359–390. [CrossRef] [MathSciNet]
  2. G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl. Math. 65 (2001) 9–33. [CrossRef] [MathSciNet]
  3. F. Alessio, L. Jeanjean and P. Montecchiari, Stationary layered solutions in Formula for a class of non autonomous Allen-Cahn equations. Calc. Var. Partial Differ. Equ. 11 (2000) 177–202. [CrossRef]
  4. F. Alessio, L. Jeanjean and P. Montecchiari, Existence of infinitely many stationary layered solutions in Formula for a class of periodic Allen Cahn Equations. Commun. Partial Differ. Equ. 27 (2002) 1537–1574. [CrossRef]
  5. L. Ambrosio and X. Cabre, Entire solutions of semilinear elliptic equations in Formula and a conjecture of De Giorgi. J. Am. Math. Soc. 13 (2000) 725–739. [CrossRef]
  6. V. Bargert, On minimal laminations on the torus. Ann. Inst. H. Poincaré Anal. Nonlinéaire 6 (1989) 95–138.
  7. M.T. Barlow, R.F. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi. Comm. Pure Appl. Math. 53 (2000) 1007–1038. [CrossRef] [MathSciNet]
  8. H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Duke Math. J. 103 (2000) 375–396. [CrossRef] [MathSciNet]
  9. E. De Giorgi, Convergence problems for functionals and operators, in Proc. Int. Meeting on Recent Methods in Nonlinear Analysis. Rome, E. De Giorgi et al. Eds. (1978).
  10. A. Farina, Symmetry for solutions of semilinear elliptic equations in Formula and related conjectures. Ricerche Mat. (in memory of Ennio De Giorgi) 48 (1999) 129–154.
  11. N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems. Math. Ann. 311 (1998) 481–491. [CrossRef] [MathSciNet]
  12. J. Moser, Minimal solutions of variational problem on a torus. Ann. Inst. H. Poincaré Anal. NonLinéaire 3 (1986) 229–272.
  13. P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Commun. Pure Appl. Math. 56 (2003) 1078–1134. [CrossRef] [MathSciNet]
  14. P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation, II. Calc. Var. Partial Differ. Equ. 21 (2004) 157–207.
  15. P.H. Rabinowitz, Heteroclinic for reversible Hamiltonian system. Ergod. Th. Dyn. Sys. 14 (1994) 817–829.
  16. P.H. Rabinowitz, Solutions of heteroclinic type for some classes of semilinear elliptic partial differential equations. J. Math. Sci. Univ. Tokio 1 (1994) 525–550.