Free access
Issue
ESAIM: COCV
Volume 12, Number 1, January 2006
Page(s) 35 - 51
DOI http://dx.doi.org/10.1051/cocv:2005031
Published online 15 December 2005
  1. M.A. Akcoglu and U. Krengel, Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323 (1981) 53–67. [CrossRef] [MathSciNet]
  2. F. Alvarez and J.-P. Mandallena, Homogenization of multiparameter integrals. Nonlinear Anal. 50 (2002) 839–870. [CrossRef] [MathSciNet]
  3. H. Attouch, Variational convergence for functions and operators. Pitman (1984).
  4. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet]
  5. K. Bhattacharya and R. Kohn, Elastic energy minimization and the recoverable strains of polycristalline shape-memory materials. Arch. Rat. Mech. Anal. 139 (1997) 99–180. [CrossRef] [MathSciNet]
  6. A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. 103 (1985) 313–322.
  7. A. Braides and A. Defranceschi, Homogenization of multiple integrals. Oxford University Press (1998).
  8. C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on topological spaces with applications in control theory and probability theory. Mathematics and Its Applications, Kluwer, The Netherlands (2004).
  9. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Lect. Notes Math. 580 (1977).
  10. B. Dacorogna, Quasiconvexity and relaxation of nonconvex variational problems. J. Funct. Anal. 46 (1982) 102–118. [CrossRef] [MathSciNet]
  11. G. Dal maso, An introduction to Γ-convergence. Birkhäuser (1993).
  12. G. Dal maso and L. Modica, Nonlinear stochastic homogenization. J. Reine Angew. Math. 363 (1986) 27–43.
  13. L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Amer. Math. Soc. 74 (1990).
  14. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet]
  15. D. Kinderlherer and P. Pedregal, Characterization of Young measure generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329–365. [CrossRef] [MathSciNet]
  16. D. Kinderlherer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59–89. [CrossRef] [MathSciNet]
  17. C. Licht and G. Michaille, Global-local subadditive ergodic theorems and application to homogenization in elasticity. Ann. Math. Blaise Pascal 9 (2002) 21–62. [MathSciNet]
  18. P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems. Annali Mat. Pura Appl. 117 (1978) 139–152. [CrossRef] [MathSciNet]
  19. S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal. 100 (1987) 189–212.
  20. P. Pedregal, Parametrized measures and variational principles. Birkhäuser (1997).
  21. P. Pedregal, Γ-convergence through Young meaasures. SIAM J. Math. Anal. 36 (2004) 423–440. [CrossRef] [MathSciNet]
  22. M. Valadier, Young measures. Lect. Notes Math. 1446 (1990) 152–188. [CrossRef]
  23. M. Valadier, A course on Young measures. Rend. Istit. Mat. Univ. Trieste 26 (1994) Suppl. 349–394.
  24. W.P. Ziemer, Weakly differentiable functions. Springer (1989).