Free access
Issue
ESAIM: COCV
Volume 12, Number 2, April 2006
Page(s) 311 - 349
DOI http://dx.doi.org/10.1051/cocv:2006004
Published online 22 March 2006
  1. H. Amann, Linear and quasilinear parabolic problems. Vol. I, Abstract linear theory. Birkhäuser Boston Inc., Boston, MA. Monographs Math. 89 (1995).
  2. V. Barbu and G. Da Prato, Hamilton-Jacobi equations in Hilbert spaces, Pitman (Advanced Publishing Program), Boston, MA Res. Notes Math. 86 (1983).
  3. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 1. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1992).
  4. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems. Vol. 2. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1993).
  5. P. Cannarsa and H. Frankowska, Value function and optimality condition for semilinear control problems. II. Parabolic case. Appl. Math. Optim. 33 (1996) 1–33. [CrossRef] [MathSciNet]
  6. P. Cannarsa and M.E. Tessitore, Cauchy problem for the dynamic programming equation of boundary control. Boundary control and variation (1994) 13–26.
  7. P. Cannarsa and M.E. Tessitore, Cauchy problem for Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type, in Control of partial differential equations and applications (Laredo, 1994), Dekker, New York. Lect. Notes Pure Appl. Math. 174 (1996) 31–42.
  8. P. Cannarsa and M.E. Tessitore, Dynamic programming equation for a class of nonlinear boundary control problems of parabolic type. Cont. Cybernetics 25 (1996) 483–495. Distributed parameter systems: modelling and control (1995).
  9. P. Cannarsa and M.E. Tessitore, Infinite-dimensional Hamilton-Jacobi equations and Dirichlet boundary control problems of parabolic type. SIAM J. Control Optim. 34 (1996) 1831–1847. [CrossRef] [MathSciNet]
  10. M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. I. Uniqueness of viscosity solutions. J. Funct. Anal. 62 (1985) 379–396. [CrossRef] [MathSciNet]
  11. M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. II. Existence of viscosity solutions. J. Funct. Anal. 65 (1986) 368–405. [CrossRef] [MathSciNet]
  12. M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. III. J. Funct. Anal. 68 (1986) 214–247. [CrossRef] [MathSciNet]
  13. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. IV. Hamiltonians with unbounded linear terms. J. Funct. Anal. 90 (1990) 237–283. [CrossRef] [MathSciNet]
  14. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. V. Unbounded linear terms and B-continuous solutions. J. Funct. Anal. 97 (1991) 417–465. [CrossRef] [MathSciNet]
  15. M.G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions. VI. Nonlinear A and Tataru's method refined, in Evolution equations, control theory, and biomathematics (Han sur Lesse 1991), Dekker, New York. Lect. Notes Pure Appl. Math. 155 (1994) 51–89.
  16. M.G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations in infinite dimensions. VII. The HJB equation is not always satisfied. J. Funct. Anal. 125 (1994) 111–148. [CrossRef] [MathSciNet]
  17. S Gombao, Équations de Hamilton-Jacobi-Bellman pour des problèmes de contrôle d'équations paraboliques semi-linéaires. Approche théorique et numérique. Université Paul Sabatier, Toulouse (2004).
  18. F. Gozzi, S.S. Sritharan and A. Święch, Viscosity solutions of dynamic-programming equations for the optimal control of the two-dimensional Navier-Stokes equations. Arch. Ration. Mech. Anal. 163 (2002) 295–327. [CrossRef] [MathSciNet]
  19. D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, Berlin. Lect. Notes Math. 840 (1981).
  20. H. Ishii, Viscosity solutions for a class of Hamilton-Jacobi equations in Hilbert spaces. J. Funct. Anal. 105 (1992) 301–341. [CrossRef] [MathSciNet]
  21. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968).
  22. S.M. Rankin, III. Semilinear evolution equations in Banach spaces with application to parabolic partial differential equations. Trans. Amer. Math. Soc. 336 (1993) 523–535. [CrossRef] [MathSciNet]
  23. J.-P. Raymond, Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete Contin. Dynam. Syst. 3 (1997) 341–370. [CrossRef] [MathSciNet]
  24. J.-P. Raymond and H. Zidani, Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143–177. [CrossRef] [MathSciNet]
  25. T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, Walter de Gruyter & Co., Berlin, de Gruyter Series in Nonlinear Analysis and Applications 3 (1996).
  26. K. Shimano, A class of Hamilton-Jacobi equations with unbounded coefficients in Hilbert spaces. Appl. Math. Optim. 45 (2002) 75–98. [CrossRef] [MathSciNet]
  27. H.M. Soner, On the Hamilton-Jacobi-Bellman equations in Banach spaces. J. Optim. Theory Appl. 57 (1988) 429–437. [CrossRef] [MathSciNet]
  28. D. Tataru, Viscosity solutions for the dynamic programming equations. Appl. Math. Optim. 25 (1992) 109–126. [CrossRef] [MathSciNet]
  29. D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear term: a simplified approach. J. Differ. Equ. 111 (1994) 123–146. [CrossRef]