Free access
Issue
ESAIM: COCV
Volume 12, Number 3, July 2006
Page(s) 484 - 544
DOI http://dx.doi.org/10.1051/cocv:2006006
Published online 20 June 2006
  1. R.A. Adams, Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London, 1975.
  2. J.-P. Aubin, L'analyse non linéaire et ses motivations économiques. Masson, Paris (1984).
  3. S. Anita and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV 5 (2000) 157–173. [CrossRef] [EDP Sciences]
  4. J.A. Bello, Thesis, University of Seville (1993).
  5. T. Cebeci and A.M. Smith, Analysis of turbulent boundary layers. Applied Mathematics and Mechanics, No. 15. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1974).
  6. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1995/96) 35–75.
  7. C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh 125A (1995) 31–61.
  8. E. Fernández-Cara, S. Guerrero, O.Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83/12 (2004) 1501–1542.
  9. E. Fernández-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré, Analyse non Lin. 17 (2000) 583–616.
  10. A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Lecture Notes #34, Seoul National University, Korea (1996).
  11. G.P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994).
  12. O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions, in Turbulence Modelling and Vortex Dynamics, Istanbul, Springuer Berlin, 1996. Lect. Notes . Phys. 491 (1997) 148–168 [CrossRef]
  13. O.Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet]
  14. O.Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak elliptic non homogeneous Dirichlet problem. Int. Math. Research Notices 16 (2003) 883–913. [CrossRef]
  15. O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications. Lect. Notes Pure Appl. Math. 218 (2001)
  16. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications (3 volumes). Dunod, Gauthiers-Villars, Paris (1968).
  17. P. Malliavin, Intégration et probabilités. Analyse de Fourier et analyse spectrale. Masson (1982).
  18. R.L. Panton, Incompressible flow. Wiley-Interscience, New York (1984).
  19. H. Schlichting, Boundary-Layer Theory. McGraw-Hill, New York (1968).
  20. V.A. Solonnikov and V.E. Schadilov, On a boundary value problem for a stationnary system of Navier-Stokes equations. Trudy Mat. Inst. Steklov 125 (1973) 196–210. [MathSciNet]
  21. L. Tartar, An introduction to Sobolev spaces and interpolation spaces. Course (2000), URL: http://www.math.cmu.edu/cna/publications/SOB+Int.pdf.
  22. R. Temam, Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its applications, 2. North Holland Publishing Co., Amsterdam-New York-Oxford (1977).
  23. E. Zuazua, Exact boundary controllability for the semilinear wave equation, H. Brezis and J.L. Lions Eds., Pitman, New York in Nonlinear Partial Differential Equations Appl. X (1991) 357–391.