Free access
Issue
ESAIM: COCV
Volume 12, Number 3, July 2006
Page(s) 545 - 563
DOI http://dx.doi.org/10.1051/cocv:2006008
Published online 20 June 2006
  1. C. Baiocchi, V. Komornik and P. Loreti, Ingham type theorems and applications to control theory. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. 2 (1999) 33–63.
  2. V. Balamurugan and S. Narayanan, Shell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control. Finite Elem. Anal. Des. 37 (2001) 713–738. [CrossRef]
  3. J.W.S. Cassels, An introduction to diophantine approximation. Moskau: Verlag 213 S. (1961).
  4. E. Crépeau, Exact boundary controllability of the Boussinesq equation on a bounded domain. Diff. Int. Equ. 16 (2003) 303–326.
  5. E. Crépeau, Contrôlabilité exacte d'équations dispersives issues de la mécanique. Thèse de l'Université de Paris-Sud, avalaible at www.math.ursq.fr/~crepeau/PUBLI/these1.html.
  6. P. Destuynder, I. Legrain, L. Castel and N. Richard, Theorical, numerical and experimental discussion of the use of piezoelectric devices for control-structure interaction. Eur. J. Mech., A/Solids 11 (1992) 97–106.
  7. P. Destuynder, A mathematical analysis of a smart-beam which is equipped with piezoelectric actuators. Control Cybern. 28 (1999) 503–530.
  8. M. Fliess, H. Mounier, P. Rouchon and J. Rudolph, Linear systems over Mikusinski operators and control of a flexible beam. ESAIM: Proc. 2 (1997) 183–193. [CrossRef]
  9. P. Germain, Mecanique, Tome II. Ellipses (1996).
  10. D. Halim and S.O.R. Moheimani, Spatial Resonant Control of Flexible Structures – Applications to a Piezoelectric Laminate Beam. IEEE Trans. Control Syst. Tech. 9 (2001) 37–53. [CrossRef]
  11. D. Halim and S.O.R. Moheimani, Spatial H2 control of a piezoelectric laminate beam: experimental implementation. IEEE Trans. Control Syst. Tech. 10 (2002) 533–546. [CrossRef]
  12. W.S. Hwang and H.C. Park, Finite element modeling of piezoelectric sensors and actuator. AIAA Journal 31 (1993) 930–937. [CrossRef]
  13. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Zeitschr. 41 (1936) 367–379.
  14. S. Lang, Introduction to diophantine approximations. Springer-Verlag (1991).
  15. S. Leleu, Amortissement actif des vibrations d'une structure flexible de type plaque à l'aide de transducteurs piézoélectriques. Thèse, ENS de Cachan (2002).
  16. J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tome 1, Contrôlabilité exacte, Collection de recherche en mathématiques appliquées 8 (Masson, Paris), 1988. distribués, Masson, Paris (1988).
  17. L. Meirovitch, Elements of vibration analysis, Düsseldorf, McGraw-Hill (1975).
  18. R. Rebarber, Spectral assignability for distribued parameter systems with unbounded scalar control. SIAM J. Control Optim. 27 (1989) 148–169. [CrossRef] [MathSciNet]
  19. L. Rosier, Exact boundary controllability for the linear KdV equation – a numerical study. ESAIM: Proc. 4 (1998) 255–267. [CrossRef]
  20. J. Rudolph and F. Woittennek, Flatness based boundary control of piezoelectric benders. Automatisierungstechnik 50 (2002) 412–421. [CrossRef]
  21. R.S. Smith, C.C. Chu and J.L. Fanson, The design of Formula controllers for an experimental non-collocated flexible structure Problem. IEEE Trans. Control Syst. Tech. 2 (1994) 101–109. [CrossRef]
  22. S. Tliba and H. Abou-Kandil, Formula controller design for active vibration damping of a smart flexible structure using piezoelectric transducers, in 4th Symp. IFAC on Robust Control Design (ROCOND 2003), Milan, Italy (2003).
  23. M. Tucsnak, Regularity and exact controllability for a beam with piezoelectric actuator. SIAM J. Control Optim. 34 (1996) 922–930. [CrossRef] [MathSciNet]