Free access
Issue
ESAIM: COCV
Volume 12, Number 4, October 2006
Page(s) 699 - 720
DOI http://dx.doi.org/10.1051/cocv:2006018
Published online 11 October 2006
  1. G. Allaire, Shape optimization by the homogenization method. Springer (2002).
  2. G. Allaire, E. Bonnetier, G. Franfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27–68. [CrossRef] [MathSciNet]
  3. G. Allaire and R.V. Kohn, Optimal bounds on the effective behauvior of a mixture of two well-odered elastic materials. Quat. Appl. Math. 51 (1993) 643–674.
  4. G. Allaire and R.V. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Europ. J. Mech. A/solids 12 (1993) 839–878.
  5. G. Allaire and F. Murat, Homogenization of the Neumann problem with nonisolated holes. Asymptotic Anal. 7 (1993) 81–95. With an appendix written jointly with A.K. Nandakumar. [MathSciNet]
  6. J.C. Bellido, Explicit computation of the relaxed density coming from a three-dimensional optimal design prroblem. Nonlinear Analysis TMA 52 (2003) 1709–1726. [CrossRef]
  7. J.C. Bellido and P. Pedregal, Optimal design via variational principles: the one-dimensional case. J. Math. Pures Appl. 80 (2000) 245–261. [CrossRef]
  8. J.C. Bellido and P. Pedregal, Explicit quasiconvexification for some cost functionals depending on the derivatives of the state in optimal design. DCDS-A 8 (2002) 967–982. [CrossRef]
  9. J.C. Bellido and P. Pedregal, Optimal control via variational principles: the three dimensional case. J. Math. Anal. Appl. 287 (2003) 157–176. [CrossRef] [MathSciNet]
  10. J.C. Bellido and P. Pedregal, Existence in optimal control with state equation in divergence form via variational principles. J. Convex Anal. 10 (2003) 365–378. [MathSciNet]
  11. M.P. Bendsøe and O. Sigmund, Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003).
  12. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 22 (2002).
  13. M. Briane, Homogenization in some weakly connected domains. Ricerche Mat. 47 (1998) 51–94. [MathSciNet]
  14. M. Briane, Homogenization in general periodically perforated domains by a spectral approach. Calc. Var. Partial Differ. Equat. 15 (2002) 1–24. [CrossRef]
  15. A. Cherkaev, Variational methods for structural optimization. Springer (2000).
  16. G. Dal Maso, Introduction to Γ-convergence. Birkhäuser, Boston, 1993.
  17. I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition. Cal. Var. 2 (1994) 283–313. [CrossRef] [MathSciNet]
  18. V. Girault and P.A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1985).
  19. S. Müller and V. Šverák, Convex integration for lipschitz mappings and counterexamples for regularity. Technical Report 26, Max-Planck Institute for Mathematics in the Sciences, Leipzig (1999).
  20. F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat Pura Appl. 112 (1977) 49–68. [CrossRef] [MathSciNet]
  21. P. Pedregal, Parametrized Measures and Variational Principles. Progress in Nonlinear Partial Differential Equations. Birkhäuser (1997).
  22. P. Pedregal, Optimal design and constrained quasiconvexity. SIAM J. Math. Anal. 32 (2000) 854–869. [CrossRef] [MathSciNet]
  23. P. Pedregal, Constrained quasiconvexification of the square of the gradient of the state in optimal design. Quater. Appl. Math. 62 (2004) 459–470.
  24. L. Tartar, Remarks on optimal design problems, in Homogenization and continuum mechanics, G. Buttazzo, G. Bouchitte, and P. Suchet Eds, Singapure World Scientific (1994) 279–296.
  25. L. Tartar, An introduction to homogenization method in optimal design. Lect. Notes Math. Springer (2000).
  26. V. Šverák, Lower semicontinuity of variational integrals and compesated compactness, in Proc. ICM, S.D. Chatterji Ed., Birkhäuser 2 (1994) 1153–1158.