 R. Alicandro, A. Braides and M.S. Gelli, Freediscontinuity problems generated by singular perturbation. Proc. Roy. Soc. Edinburgh Sect. A 6 (1998) 1115–1129.
 R. Alicandro, A. Braides and J. Shah, Freediscontinuity problems via functionals involving the L^{1}norm of the gradient and their approximations. Interfaces and free boundaries 1 (1999) 17–37. [CrossRef] [MathSciNet]
 R. Alicandro and M.S. Gelli, Free discontinuity problems generated by singular perturbation: the ndimensional case. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000) 449–469. [MathSciNet]
 L. Ambrosio, A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857–881. [MathSciNet]
 L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).
 L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via convergence. Comm. Pure Appl. Math. XLIII (1990) 999–1036.
 L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) VI (1992) 105–123.
 G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1–18. [MathSciNet]
 B. Bourdin and A. Chambolle, Implementation of an adaptive finiteelement approximation of the MumfordShah functional. Numer. Math. 85 (2000) 609–646. [CrossRef] [MathSciNet]
 A. Braides. Approximation of freediscontinuity problems. Lect. Notes Math. 1694, Springer Verlag, Berlin (1998).
 A. Braides and A. Garroni, On the nonlocal approximation of freediscontinuity problems. Comm. Partial Differential Equations 23 (1998) 817–829. [CrossRef] [MathSciNet]
 A. Braides and G. Dal Maso, Nonlocal approximation of the MumfordShah functional. Calc. Var. 5 (1997) 293–322. [CrossRef] [MathSciNet]
 A. Chambolle and G. Dal Maso, Discrete approximation of the MumfordShah functional in dimension two. ESAIM: M2AN 33 (1999) 651–672. [CrossRef] [EDP Sciences]
 G. Cortesani, Sequence of nonlocal functionals which approximate freediscontinuity problems. Arch. Rational Mech. Anal. 144 (1998) 357–402. [CrossRef] [MathSciNet]
 G. Cortesani, A finite element approximation of an image segmentation problem. Math. Models Methods Appl. Sci. 9 (1999) 243–259. [CrossRef] [MathSciNet]
 G. Cortesani and R. Toader, Finite element approximation of nonisotropic freediscontinuity problems. Numer. Funct. Anal. Optim. 18 (1997) 921–940. [CrossRef] [MathSciNet]
 G. Cortesani and R. Toader, A density result in SBV with respect to nonisotropic energies. Nonlinear Anal. 38 (1999) 585–604. [CrossRef] [MathSciNet]
 G. Cortesani and R. Toader, Nonlocal approximation of nonisotropic freediscontinuity problems. SIAM J. Appl. Math. 59 (1999) 1507–1519. [CrossRef] [MathSciNet]
 G. Dal Maso, An Introduction to Convergence. Birkhäuser, Boston (1993).
 E. De Giorgi. Free discontinuity problems in calculus of variations, in Frontiers in pure and applied mathematics. A collection of papers dedicated to JacquesLouis Lions on the occasion of his sixtieth birthday. June 6–10, Paris 1988, Robert Dautray, Ed., Amsterdam, NorthHolland Publishing Co. (1991) 55–62.
 L. Lussardi and E. Vitali, Nonlocal approximation of freediscontinuity functionals with linear growth: the onedimensional case. Ann. Mat. Pura Appl. (to appear).
 M. Morini, Sequences of singularly perturbed functionals generating freediscontinuity problems. SIAM J. Math. Anal. 35 (2003) 759–805. [CrossRef] [MathSciNet]
 M. Negri, The anisotropy introduced by the mesh in the finite element approximation of the MumfordShah functional. Numer. Funct. Anal. Optim. 20 (1999) 957–982. [CrossRef] [MathSciNet]
 S. Osher and J.A. Sethian, Fronts propagating with curvaturedependent speed: algorithms based on HamiltonJacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet]
 J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, in IEEE conference on computer vision and pattern recognition (1996).
 J. Shah, Uses of elliptic approximations in computer vision. In R. Serapioni and F. Tomarelli, editors, Progress in Nonlinear Differential Equations and Their Applications 25 (1996).
 L. Simon, Lectures on Geometric Measure Theory. Centre for Mathematical Analysis, Australian National University (1984).
Free access
Issue 
ESAIM: COCV
Volume 13, Number 1, JanuaryMarch 2007



Page(s)  135  162  
DOI  http://dx.doi.org/10.1051/cocv:2007008  
Published online  14 February 2007 