Free access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 237 - 264
DOI http://dx.doi.org/10.1051/cocv:2007011
Published online 12 May 2007
  1. E. Aranda-Bricaire, C.H. Moog and J.-B. Pomet, An infinitesimal Brunovsky form for nonlinear systems with applications to dynamic linearization. Banach Center Publications 32 (1995) 19–33.
  2. D. Avanessoff, Linéarisation dynamique des systèmes non linéaires et paramétrage de l'ensemble des solutions. Ph.D. thesis, University of Nice-Sophia Antipolis (June 2005).
  3. R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmitt and P.A. Griffiths, Exterior Differential Systems, Springer-Verlag, M.S.R.I. Publications 18 (1991).
  4. É. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles. J. reine angew. Math. 145 (1915) 86–91.
  5. B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization. Syst. Control Lett. 13 (1989) 143–151. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  6. B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization. SIAM J. Control Optim. 29 (1991) 38–57. [CrossRef] [MathSciNet]
  7. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats. C. R. Acad. Sci. Paris Sér. I 315 (1992) 619–624.
  8. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples. Int. J. Control 61 (1995) 1327–1361. [CrossRef] [MathSciNet]
  9. M. Fliess, J. Lévine, P. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999) 922–937. [CrossRef] [MathSciNet]
  10. M. Fliess, J. Lévine, P. Martin and P. Rouchon, Some open questions related to flat nonlinear systems, in Open problems in mathematical systems and control theory, Springer, London (1999) 99–103.
  11. M. Golubitsky and V. Guillemin, Stable mappings and their singularities. Springer-Verlag, New York, GTM 14 (1973).
  12. D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen. Math. Annalen 73 (1912) 95–108. [CrossRef] [MathSciNet]
  13. E. Hubert, Notes on triangular sets and triangulation-decomposition algorithms. I: Polynomial systems. II: Differential systems. In F. Winkler et al. eds., Symbolic and Numerical Scientific Computing 2630, 1–87. Lect. Notes Comput. Sci. (2003).
  14. A. Isidori, C.H. Moog and A. de Luca, A sufficient condition for full linearization via dynamic state feedback, in Proc. 25th IEEE Conf. on Decision and Control, Athens (1986) 203–207.
  15. P. Martin, Contribution à l'étude des systèmes différentiellement plats. Ph.D. thesis, École des Mines, Paris (1992).
  16. P. Martin, R.M. Murray and P. Rouchon, Flat systems, in Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes VIII, (electronic). Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 705–768.
  17. P. Martin and P. Rouchon, Feedback linearization and driftless systems. Math. Control Signals Syst. 7 (1994) 235–254. [CrossRef] [MathSciNet]
  18. J.-B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization. Banach Center Publications 32 (1995) 319–339.
  19. J.-B. Pomet, On dynamic feedback linearization of four-dimensional affine control systems with two inputs. ESAIM Control Optim. Calc. Var. 2 (1997) 151–230. http://www.edpsciences.org/cocv/. [CrossRef] [MathSciNet]
  20. J.F. Ritt, Differential Algebra. AMS Coll. Publ. XXXIII. New York (1950).
  21. P. Rouchon, Flatness and oscillatory control: some theoretical results and case studies. Tech. report PR412, CAS, École des Mines, Paris (1992).
  22. P. Rouchon, Necessary condition and genericity of dynamic feedback linearization. J. Math. Syst. Estim. Contr. 4 (1994) 1–14.
  23. W.M. Sluis, A necessary condition for dynamic feedback linearization. Syst. Control Lett. 21 (1993) 277–283. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  24. M. van Nieuwstadt, M. Rathinam and R. Murray, Differential flatness and absolute equivalence of nonlinear control systems. SIAM J. Control Optim. 36 (1998) 1225–1239. http://epubs.siam.org:80/sam-bin/dbq/article/27402. [CrossRef] [MathSciNet]
  25. P. Zervos, Le problème de Monge. Mémorial des Sciences Mathématiques, LIII (1932).