Free access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 378 - 395
DOI http://dx.doi.org/10.1051/cocv:2007013
Published online 12 May 2007
  1. F. Albertini and D. D'Alessandro, Notions of controllability for multilevel bilinear quantum mechanical systems. IEEE Trans. Automatic Control 48 (2003) 1399–1403. [CrossRef] [MathSciNet]
  2. O.F. Alis, H. Rabitz, M.Q. Phan, C. Rosenthal and M. Pence, On the inversion of quantum mechanical systems: Determining the amount and type of data for a unique solution. J. Math. Chem. 35 (2004) 65–78. [CrossRef] [MathSciNet]
  3. Claudio Altafini, Controllability of quantum mechanical systems by root space decomposition of Formula . J. Math. Phys. 43 (2002) 2051–2062. [CrossRef] [MathSciNet]
  4. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle and G. Gerber, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282 (1998) 919–922. [CrossRef] [PubMed]
  5. C. Bardeen, V.V. Yakovlev, K.R. Wilson, S.D. Carpenter, P.M. Weber and W.S. Warren, Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280 (1997) 151. [CrossRef]
  6. C.J. Bardeen, V.V. Yakovlev, J.A. Squier and K.R. Wilson, Quantum control of population transfer in green fluorescent protein by using chirped femtosecond pulses. J. Am. Chem. Soc. 120 (1998) 13023–13027. [CrossRef]
  7. R.R. Barton and J.S. Jr. Ivey, Nelder-Mead simplex modifications for simulation optimization. Manage. Sci. 42 (1996) 954–973. [CrossRef]
  8. Y. Chen, P. Gross, V. Ramakrishna, H. Rabitz and K. Mease, Competitive tracking of molecular objectives described by quantum mechanics. J. Chem. Phys. 102 (1995) 8001–8010. [CrossRef]
  9. C. Cohen-Tannoudji, B. Diu and F. Laloë, Mécanique Quantique, Volumes I & II. Hermann, Paris (1977).
  10. J.M. Geremia and H. Rabitz, Optimal hamiltonian identification: The synthesis of quantum optimal control and quantum inversion. J. Chem. Phys 118 (2003) 5369–5382. [CrossRef]
  11. R.S. Judson and H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68 (1992) 1500. [CrossRef] [PubMed]
  12. R.L. Kosut and H. Rabitz, Identification of quantum systems. In Proceedings of the 15th IFAC World Congress (2002).
  13. S. Kullback, Information Theory and Statistics. Wiley, New York (1959).
  14. S. Kullback and R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22 (1951) 79–86. [CrossRef] [MathSciNet]
  15. C. Le Bris, Y. Maday and G. Turinici, Towards efficient numerical approaches for quantum control. In Quantum Control: mathematical and numerical challenges, A. Bandrauk, M.C. Delfour and C. Le Bris Eds., CRM Proc. Lect. Notes Ser., AMS Publications, Providence, R.I. (2003) 127–142.
  16. R.J. Levis, G. Menkir and H. Rabitz, Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses. Science 292 (2001) 709. [CrossRef] [PubMed]
  17. B. Li, G. Turinici, V. Ramakrishna and H. Rabitz, Optimal dynamic discrimination of similar molecules through quantum learning control. J. Phys. Chem. B. 106 (2002) 8125–8131. [CrossRef]
  18. Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys 118 (18) (2003).
  19. M. Mirrahimi, P. Rouchon and G. Turinici, Lyapunov control of bilinear Schrödinger equations. Automatica 41 (2005) 1987–1994. [CrossRef] [MathSciNet]
  20. M. Mirrahimi, G. Turinici and P. Rouchon, Reference trajectory tracking for locally designed coherent quantum controls. J. Phys. Chem. A 109 (2005) 2631–2637. [CrossRef] [PubMed]
  21. M.Q. Phan and H. Rabitz, Learning control of quantum-mechanical systems by laboratory identification of effective input-output maps. Chem. Phys. 217 (1997) 389–400. [CrossRef]
  22. H. Rabitz, Perspective. Shaped laser pulses as reagents. Science 299 (2003) 525–527. [CrossRef] [PubMed]
  23. V. Ramakrishna, M. Salapaka, M. Dahleh and H. Rabitz, Controllability of molecular systems. Phys. Rev. A 51 (1995) 960–966. [CrossRef] [PubMed]
  24. S. Rice and M. Zhao, Optimal Control of Quatum Dynamics. Wiley (2000) (many additional references to the subjects of this paper may also be found here).
  25. N. Shenvi, J.M. Geremia and H. Rabitz, Nonlinear kinetic parameter identification through map inversion. J. Phys. Chem. A 106 (2002) 12315–12323. [CrossRef]
  26. M. Tadi and H. Rabitz, Explicit method for parameter identification. J. Guid. Control Dyn. 20 (1997) 486–491. [CrossRef]
  27. G. Turinici and H. Rabitz, Quantum wavefunction controllability. Chem. Phys. 267 (2001) 1–9. [CrossRef]
  28. G. Turinici and H. Rabitz, Wavefunction controllability in quantum systems. J. Phys. A 36 (2003) 2565–2576. [CrossRef] [MathSciNet]
  29. T Weinacht, J. Ahn and P. Bucksbaum, Controlling the shape of a quantum wavefunction. Nature 397 (1999) 233. [CrossRef]
  30. W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109 (1998) 385–391. [CrossRef]
  31. W. Zhu and H. Rabitz, Potential surfaces from the inversion of time dependent probability density data. J. Chem. Phys. 111 (1999) 472–480. [CrossRef]