Free access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 396 - 412
DOI http://dx.doi.org/10.1051/cocv:2007015
Published online 12 May 2007
  1. M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA (to appear).
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000).
  3. G. Bouchitté, I. Fonseca and L. Mascarenhas, A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 51–98. [CrossRef]
  4. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes Math., Longman, Harlow (1989).
  5. G. Dal Maso, Integral representation on BVFormula of Formula -limits of variational integrals. Manuscripta Math. 30 (1980) 387–416. [CrossRef]
  6. G. Dal Maso, An Introduction toFormula -convergence. Birkhäuser, Boston (1993).
  7. V. De Cicco, N. Fusco and A. Verde, On L1-lower semicontinuity in BVFormula . J. Convex Analysis 12 (2005) 173–185.
  8. V. De Cicco, N. Fusco and A. Verde, A chain rule formula in BVFormula and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 28 (2007) 427–447. [CrossRef]
  9. V. De Cicco and G. Leoni, A chain rule in Formula and its applications to lower semicontinuity. Calc. Var. Partial Differ. Equ. 19 (2004) 23–51.
  10. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. [MathSciNet]
  11. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63–101.
  12. L.C. Evans and R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
  13. H. Federer, Geometric measure theory. Springer-Verlag, Berlin (1969).
  14. I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617–635. [MathSciNet]
  15. I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. R. Soc. Edinb. Sect. A Math. 131 (2001) 519–565. [CrossRef] [MathSciNet]
  16. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet]
  17. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BVFormula for integrands Formula . Arch. Rat. Mech. Anal. 123 (1993) 1–49. [CrossRef] [MathSciNet]
  18. N. Fusco, M. Gori and F. Maggi, A remark on Serrin's Theorem. NoDEA 13 (2006) 425–433. [CrossRef] [MathSciNet]
  19. E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984).
  20. M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 475–502. [MathSciNet]
  21. M. Gori, F. Maggi and P. Marcellini, On some sharp conditions for lower semicontinuity in L1. Diff. Int. Eq. 16 (2003) 51–76.
  22. A.I. Vol'pert and S.I. Hudjaev, Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics. Martinus & Nijhoff Publishers, Dordrecht (1985).