Free access
Issue
ESAIM: COCV
Volume 13, Number 2, April-June 2007
Page(s) 294 - 304
DOI http://dx.doi.org/10.1051/cocv:2007018
Published online 12 May 2007
  1. G. Aronsson, Extensions of functions satisfiying Lipschitz conditions. Ark. Math. 6 (1967) 551–561. [CrossRef] [MathSciNet]
  2. G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. 41 (2004) 439–505. [CrossRef] [MathSciNet]
  3. G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Part. Diff. Eq. 26 (2001) 2323–2337. [CrossRef] [MathSciNet]
  4. M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as Formula . ESAIM: COCV 10 (2004) 28–52. [CrossRef] [EDP Sciences]
  5. M. Belloni, B. Kawohl and P. Juutinen, The p-Laplace eigenvalue problem as Formula in a Finsler metric. J. Europ. Math. Soc. (to appear).
  6. G. Bouchitte, G. Buttazzo and L. De Pasquale, A Formula laplacian approximation for some mass optimization problems. J. Optim. Theory Appl. 118 (2003) 125.
  7. M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. [CrossRef] [MathSciNet]
  8. M.G. Crandall, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. PDE 13 (2001) 123–139.
  9. L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999), No. 653.
  10. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51–74. [CrossRef] [MathSciNet]
  11. O. Savin, C1 regularity for infinity harmonic functions in two dimensions. Arch. Rational Mech. Anal. 176 (2005) 351–361. [CrossRef]