Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 623 - 638
DOI http://dx.doi.org/10.1051/cocv:2007038
Published online 05 September 2007
  1. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [CrossRef] [MathSciNet]
  2. T. Cazenave and A. Haraux, Introduction aux Problèmes d'Evolution Semi-Linéaires, Collection Mathématiques et Applications de la SMAI. Éditions Ellipses, Paris (1991).
  3. R. Dorville, Sur le contrôle de quelques problèmes singuliers associés à l'équation de la chaleur. Ph.D. thesis, Université des Antilles et de la Guyane (2004).
  4. R. Dorville, O. Nakoulima and A. Omrane, Low-regret control for singular distributed systems: The backwards heat ill-posed problem. Appl. Math. Lett. 17 (2004) 549–552. [CrossRef] [MathSciNet]
  5. A. Doubova, A. Osses and J.P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: COCV 8 (2002) 621–661. [CrossRef] [EDP Sciences]
  6. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburg 125A (1995) 31–61.
  7. E. Fernández-Cara, Nul controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87–103. [CrossRef] [EDP Sciences] [MathSciNet]
  8. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef]
  9. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514.
  10. A. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes. Research Institute of Mathematics, Seoul National University, Korea (1996).
  11. O.Yu. Imanuvilov, Controllability of parabolic equations. Sbornik Math. 186 (1995) 879–900. [CrossRef] [MathSciNet]
  12. G. Lebeau and L. Robbiano, Contrôle exacte de l'équation de la chaleur. Comm. Part. Diff. Eq. 20 (1995) 335–356. [CrossRef] [MathSciNet]
  13. J.L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris (1968).
  14. J.L. Lions, Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris (1992).
  15. J.L. Lions and M. Magenes, Problèmes aux limites non homogènes et applications. Vols. 1 et 2, Dunod, Paris (1988).
  16. O. Nakoulima, Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 405–410.
  17. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. App. Math. 52 (1973) 189–212.
  18. E. Zuazua, Exact boundary controllability for the semilinear wave equation. Non linear Partial Diff. Equ. Appl. 10 (1989) 357–391.
  19. E. Zuazua, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237–264. [CrossRef] [MathSciNet]
  20. E. Zuazua, controllability of partial differential equations and its semi-discrete approximations. Discrete Continuous Dynam. Syst. 8 (2002) 469–513. [CrossRef]