Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 669 - 691
DOI http://dx.doi.org/10.1051/cocv:2007029
Published online 20 July 2007
  1. R.W. Carroll and R.E. Showalter, Singular and Degenerate Cauchy Problems. Academic Press, New York (1976).
  2. V. Chiadò Piat, G. Dal Maso and A. Defranceschi, G-convergence of monotone operators. Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990) 123–160.
  3. F. Colombini and S. Spagnolo, Sur la convergence de solutions d'équations paraboliques. J. Math. Pur. Appl. 56 (1977) 263–306.
  4. G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993).
  5. E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 8 (1973) 391–411. [MathSciNet]
  6. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, USA (1992).
  7. A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers, Dordrecht (1997).
  8. F. Paronetto, Existence results for a class of evolution equations of mixed type. J. Funct. Anal. 212 (2004) 324–356.
  9. F. Paronetto, Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004) 21–56.
  10. R.E. Showalter, Degenerate parabolic initial-boundary value problems. J. Diff. Eq. 31 (1979) 296–312.
  11. R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society (1997).
  12. J. Simon, Compact sets in the space Formula . Ann. Mat. Pura Appl. 146 (1987) 65–96.
  13. S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 (1967) 657–699.
  14. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597.
  15. S. Spagnolo, Convergence of parabolic equations. Boll. Un. Mat. Ital. 14-B (1977) 547–568.
  16. L. Tartar, Convergence d'operateurs defferentiels, Proceedings of the Meeting “Analisi convessa e Applicazioni”. Roma (1974).
  17. L. Tartar, Cours Peccot, Collège de France, 1977. Partially written in: F. Murat, H-convergence - Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977-78. English translation: F. Murat and L. Tartar: H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev, R. Kohn, Editors, Birkhäuser, Boston (1997) 21–43.