Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 717 - 734
DOI http://dx.doi.org/10.1051/cocv:2007032
Published online 20 July 2007
  1. G. Alberti and A. DeSimone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005) 79–97. [CrossRef] [MathSciNet]
  2. L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, I: integral representation and Γ-convergence. J. Math. Pures. Appl. 69 (1990) 285–305. [MathSciNet]
  3. L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization. J. Math. Pures. Appl. 69 (1990) 307–333. [MathSciNet]
  4. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet]
  5. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000).
  6. G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in calculus of variations. Ann. Mat. Pura Appl. 170 (1996) 329–357. [CrossRef] [MathSciNet]
  7. E. Bonnetier and A. Chambolle, Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002) 1093–1121. [CrossRef] [MathSciNet]
  8. G. Bouchitté and P. Seppecher, Cahn and Hilliard fluid on an oscillating boundary. Motion by mean curvature and related topics (Trento, 1992), de Gruyter, Berlin (1994) 23–42.
  9. G. Bouchitté, A. Braides and G. Buttazzo, Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1–18. [MathSciNet]
  10. B. Bourdin and A. Chambolle, Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math. 85 (2000) 609–646. [CrossRef] [MathSciNet]
  11. A. Braides, Approximation of Free-Discontinuity Problems. Lect. Notes Math. 1694, Springer, Berlin (1998).
  12. A. Braides, Γ -convergence for Beginners. Oxford University Press, Oxford (2002).
  13. A. Braides, A handbook of Γ>-convergence, in Handbook of Differential Equations. Stationary Partial Differential Equations, Vol. 3, M. Chipot and P. Quittner Eds., Elsevier (2006).
  14. A. Braides and V. Chiadò Piat, Integral representation results for functionals defined in Formula . J. Math. Pures Appl. 75 (1996) 595–626.
  15. A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 58 (2006) 71–121. [CrossRef] [MathSciNet]
  16. A. Braides and M. Solci, A remark on the approximation of free-discontinuity problems. Manuscript (2003).
  17. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297–356. [CrossRef] [MathSciNet]
  18. B. Buffoni, Existence and conditional energetic stability of capillary-gravity solitary water waves by minimisation. Arch. Ration. Mech. Anal. 173 (2004) 25–68. [MathSciNet]
  19. A. Chambolle and M. Solci, Interaction of a bulk and a surface energy with a geometrical constraint. SIAM J. Math. Anal. 39 (2007) 77–102. [CrossRef] [MathSciNet]
  20. A. Chambolle, E. Séré and C.Zanini, Progressive water-waves: a global variational approach. (In preparation).
  21. E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser Verlag, Basel (1984).
  22. J.M. Morel and S. Solimini, Variational Methods in Image Segmentation. Progr. Nonlinear Differ. Equ. Appl. 14, Birkhäuser, Basel (1995).
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685. [CrossRef] [MathSciNet]