Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 809 - 828
DOI http://dx.doi.org/10.1051/cocv:2007041
Published online 05 September 2007
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. [CrossRef] [MathSciNet]
  2. R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
  3. A. Braides, Γ-convergence for Beginners. Oxford University Press, Oxford (2002).
  4. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
  5. A. Braides, I. Fonseca and G. Leoni, A-Quasiconvexity: Relaxation and Homogenization. ESAIM: COCV 5 (2000) 539–577. [CrossRef] [EDP Sciences]
  6. G. Dal Maso, An Introduction to Γ -convergence. Birkhäuser, Boston (1993).
  7. I. Fonseca and S. Müller, A-Quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [CrossRef] [MathSciNet]
  8. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradient. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet]
  9. F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1981) 68–102.
  10. P. Pedregal, Parametrized measures and variational principles. Birkhäuser, Baston (1997).
  11. P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41 (1993) 981–1002. [CrossRef] [MathSciNet]
  12. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. I. Random microgeometry. Proc. Roy. Soc. London A 447 (1994) 365–384. [CrossRef]
  13. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proc. Roy. Soc. London A 447 (1994) 385–396. [CrossRef]
  14. L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinerar Analysis and Mechanics: Heriot-Watt Symposium, R. Knops Ed., Longman, Harlow. Pitman Res. Notes Math. Ser. 39 (1979) 136–212.
  15. R. Temam, Navier-Stokes Equations. Elsevier Science Publishers, Amsterdam (1977).