Free access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 692 - 706
DOI http://dx.doi.org/10.1051/cocv:2007033
Published online 20 July 2007
  1. E. Acerbi and N. Fusco, Partial regularity under anisotropic Formula growth conditions. J. Diff. Eq. 107 (1994) 46–67. [CrossRef]
  2. M. Bildhauer, Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lect. Notes Math. 1818, Springer-Verlag, Berlin (2003).
  3. M. Bildhauer and M. Fuchs, Higher order variational problems with non-standard growth condition in dimension two: plates with obstacles. Ann. Acad. Sci. Fennicae Math. 26 (2001) 509–518.
  4. M. Carriero, A. Leaci and F. Tomarelli, Strong minimizers of Blake & Zisserman functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1997) 257–285.
  5. R. Choksi, R.V. Kohn and F. Otto, Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Comm. Math. Phys. 201 (1999) 61–79. [CrossRef] [MathSciNet]
  6. B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78, Springer Verlag (1989).
  7. G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, Higher order quasiconvexity reduces to quasiconvexity Arch. Rational Mech. Anal. 171 (2004) 55–81.
  8. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with Formula growth. Forum Math. 14 (2002) 245–272. [CrossRef] [MathSciNet]
  9. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with Formula growth. J. Diff. Eq. 204 (2004) 5–55.
  10. I. Fonseca and J. Malý, Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density. Ann. Inst. H. Poincaré - Anal. Non Linéaire 14 (1997) 309–338. [CrossRef] [MathSciNet]
  11. I. Fonseca and J. Malý, From Jacobian to Hessian: distributional form and relaxation. Riv. Mat. Univ. Parma (7) (2005), Proc. Conf. “Trends in the Calculus of Variations”, E. Acerbi and G. Mingione Eds., 45–74.
  12. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. 105 (1983), Princeton Univ. Press.
  13. M. Giaquinta, Growth conditions and regularity, a counterexample. Manu. Math. 59 (1987) 245–248. [CrossRef]
  14. E. Giusti, Metodi diretti in calcolo delle variazioni. U.M.I. (1994).
  15. M. Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat di Trieste XXXII (2000) 1–24.
  16. M. Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. H. Poincaré - Anal. Non Linéaire 19 (2002) 81–112. [CrossRef] [MathSciNet]
  17. P. Marcellini, Un example de solution discontinue d'un probéme variationel dans le cas scalaire. Preprint Ist. U. Dini, Firenze (1987–1988).
  18. P. Marcellini, Regularity of minimizers of integrals of the calculus of Variations with non-standard growth conditions. Arch. Rat. Mech. Anal. 105 (1989) 267–284.
  19. P. Marcellini, Regularity and existence of solutions of elliptic equations with Formula growth conditions. J. Diff. Eq. 90 (1991) 1–30. [CrossRef] [MathSciNet]
  20. P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Normale Sup. Pisa, Cl. Sci. 23 (1996) 1–25.
  21. S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. 157 (2003) 715–742. [CrossRef] [MathSciNet]
  22. A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems. Rend. Ist. Mat di Trieste (1997) 13–31.