Free access
Issue
ESAIM: COCV
Volume 14, Number 1, January-March 2008
Page(s) 105 - 147
DOI http://dx.doi.org/10.1051/cocv:2007047
Published online 21 September 2007
  1. F. Albertini and D. D'Alessandro, Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48 (2003) 1399–1403. [CrossRef] [MathSciNet]
  2. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels (1991).
  3. C. Altafini, Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002) 2051–2062. [CrossRef] [MathSciNet]
  4. J.M. Ball, J.E. Marsden and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982).
  5. L. Baudouin, A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293–325.
  6. L. Baudouin and J. Salomon, Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006) 119–124. [CrossRef] [MathSciNet]
  7. L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control. J. Differential Equations 216 (2005) 188–222. [CrossRef] [MathSciNet]
  8. K. Beauchard, Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear).
  9. K. Beauchard, Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. [CrossRef] [MathSciNet]
  10. K. Beauchard and J.-M. Coron, Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232 (2006) 328–389. [CrossRef] [MathSciNet]
  11. R. Brockett, Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213–225. [CrossRef] [MathSciNet]
  12. E. Cancès, C. Le Bris and M. Pilot, Contrôle optimal bilinéaire d'une équation de Schrödinger. C.R. Acad. Sci. Paris, Série I 330 (2000) 567–571.
  13. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. [CrossRef] [MathSciNet]
  14. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271–276.
  15. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. [MathSciNet]
  16. J.-M. Coron, Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513–554. [CrossRef] [EDP Sciences]
  17. J.-M. Coron, On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C.R. Acad. Sci., Série I 342 (2006) 103–108.
  18. J.-M. Coron and E. Crépeau, Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367–398. [CrossRef]
  19. J.-M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equation on a manifold without boundary. Russ. J. Math. Phys. 4 (1996) 429–448.
  20. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565–618. [CrossRef] [MathSciNet]
  21. O. Glass, On the controllability of the 1D isentropic Euler equation. J. European Mathematical Society 9 (2007) 427–486. [CrossRef]
  22. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. [CrossRef] [EDP Sciences]
  23. O. Glass, On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003) 332–379. [CrossRef] [MathSciNet]
  24. G. Gromov, Partial Differential Relations. Springer-Verlag, Berlin-New York-London (1986).
  25. A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457–465. [MathSciNet]
  26. L. Hörmander, On the Nash-Moser Implicit Function Theorem. Annales Academiae Scientiarum Fennicae (1985) 255–259.
  27. T. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83–95. [CrossRef] [EDP Sciences]
  28. R. Ilner, H. Lange and H. Teismann, Limitations on the control of Schrödinger equations. ESAIM: COCV 12 (2006) 615–635. [CrossRef] [EDP Sciences]
  29. T. Kato, Perturbation Theory for Linear operators. Springer-Verlag, Berlin, New-York (1966).
  30. W. Krabs, On moment theory and controllability of one-dimensional vibrating systems and heating processes. Springer – Verlag (1992).
  31. I. Lasiecka and R. Triggiani, Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differential Integral Equations 5 (1992) 571–535.
  32. I. Lasiecka, R. Triggiani and X. Zhang, Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates. J. Inverse Ill Posed-Probl. 12 (2004) 183–231. [MathSciNet]
  33. G. Lebeau, Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267–291. [MathSciNet]
  34. Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24–34. [CrossRef] [MathSciNet]
  35. M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control 49 (2004) 745–747. [CrossRef] [MathSciNet]
  36. E. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control 40 (1995) 1210–1219. [CrossRef] [MathSciNet]
  37. G. Turinici, On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, C. Le Bris and M. Defranceschi Eds., Lect. Notes Chemistry 74, Springer (2000).
  38. E. Zuazua, Remarks on the controllability of the Schrödinger equation. CRM Proc. Lect. Notes 33 (2003) 193–211.