Free access
Issue
ESAIM: COCV
Volume 14, Number 2, April-June 2008
Page(s) 381 - 409
DOI http://dx.doi.org/10.1051/cocv:2007058
Published online 20 March 2008
  1. G. Carlier and R. Tahraoui, On some optimal control problems governed by a state equation with memory. ESAIM: COCV (to appear)
  2. M. Drakhlin, On the variational problem in the space of absolutely continuous functions. Nonlin. Anal. TMA 23 (1994) 1345–1351. [CrossRef]
  3. M. Drakhlin and E. Litsyn, On the variation problem for a family of functionals in the space of absolutly continuous functions. Nonlin. Anal. TMA 26 (1996) 463–468. [CrossRef]
  4. M.E. Drakhlin and E. Stepanov, On weak lower semi-continuity for a class of functionals with deviating argument. Nonlin. Anal. TMA 28 (1997) 2005–2015. [CrossRef]
  5. M.E. Drakhlin, E. Litsyn and E. Stepanov, Variational methods for a class of nonlocal functionals. Comput. Math. Appl 37 (1999) 79–100. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  6. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Inc. (1992).
  7. L. Freddi, Limits of control problems with weakly converging nonlocal input operators. Calculus of variations and optimal control (Haifa, 1998), Math. 411, Chapman Hall/CRC, Boca Raton, FL (2000) 117–140.
  8. A.A. Gruzdev and S.A. Gusarenko, On reduction of variational problems to extremal problems without constraints. Russians mathematics 38 (1994) 37–47.
  9. E. Jouini, P.F. Koehl and N. Touzi, Optimal investment with taxes: an optimal control problem with endogeneous delay. Nonlin. Anal. TMA 37 (1999) 31–56. [CrossRef]
  10. E. Jouini, P.F. Koehl and N.Touzi, Optimal investment with taxes: an existence result. J. Math. Economics 33 (2000) 373–388. [CrossRef] [MathSciNet]
  11. G.A. Kamenskii, Variational and boundary value problems with deviating argument. Diff. Equ 6 (1970) 1349–1358.
  12. G.A. Kamenskii, On some necessary conditions of functionals with deviating argument. Nonlin. Anal. TMA 17 (1991) 457–464. [CrossRef]
  13. G.A. Kamenskii, Boundary value problems for differential-difference equations arising from variational problems. Nonlin. Anal. TMA 18 (1992) 801–813. [CrossRef]
  14. P.L. Lions and B. Larrouturou, Optimisation et commande optimale, méthodes mathématiques pour l'ingénieur, cours de l'École Polytechnique, Palaiseau, France.
  15. L. Samassi, Calculus of variation for funtionals with deviating arguments. Ph.D. thesis, University Paris-Dauphine, France (2004).
  16. L. Samassi and R. Tahraoui, Comment établir des conditions nécessaires d'optimalité dans les problèmes de contrôle dont certains arguments sont déviés ? C.R. Acad. Sci. Paris Ser 338 (2004) 611–616.
  17. J.A. Wheeler and R.P. Feynman, Classical electrodynamics in term of direct interparticle actions. Rev. Modern Phys 21 (1949) 425–433. [CrossRef]