Free access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 517 - 539
DOI http://dx.doi.org/10.1051/cocv:2008002
Published online 07 February 2008
  1. M. Berggren, A unified discrete-continuous sensitivity analysis method for shape optimization. Lecture at the Radon Institut, Linz, Austria (2005).
  2. Z. Chen and J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175–202. [CrossRef] [MathSciNet]
  3. P.G. Ciarlet, Mathematical Elasticity, Vol. 1. North-Holland, Amsterdam (1987).
  4. J.C. de los Reyes, Constrained optimal control of stationary viscous incompressible fluids by primal-dual active set methods. Ph.D. thesis, University of Graz, Austria (2003).
  5. J.C. de los Reyes and K. Kunisch, A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62 (2005) 1289–1316. [CrossRef] [MathSciNet]
  6. M.C. Delfour and J.P. Zolesio, Shapes and Geometries. SIAM (2001).
  7. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986).
  8. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).
  9. J. Haslinger and P. Neittaanmaki, Finite Element Approximation for Optimal Shape, Material and Topological Design. Wiley, Chichester (1996).
  10. J. Haslinger and P. Neittaanmaki, Introduction to shape optimization. SIAM, Philadelphia (2003).
  11. K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314 (2006) 126–149. [MathSciNet]
  12. F. Murat and J. Simon, Sur le contrôle par un domaine géometrique. Rapport 76015, Université Pierre et Marie Curie, Paris (1976).
  13. J. Sokolowski and J.P. Zolesio, Introduction to shape optimization. Springer, Berlin (1991).
  14. R. Temam, Navier Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1979).
  15. J.T. Wloka, B. Rowley and B. Lawruk, Boundary value problems for elliptic systems. Cambridge Press (1995).
  16. J.P. Zolesio, The material derivative (or speed method) for shape optimization, in Optimization of Distributed Parameter Structures, Vol. II, E. Haug and J. Cea Eds., Sijthoff & Noordhoff (1981).