Free access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 478 - 493
DOI http://dx.doi.org/10.1051/cocv:2007060
Published online 21 November 2007
  1. D. Breda, Solution operator approximation for delay differential equation characteristic roots computation via Runge-Kutta methods. Appl. Numer. Math. 56 (2005) 318–331. [CrossRef]
  2. D. Breda, S. Maset and R. Vermiglio, Computing the characteristic roots for delay differential equations. IMA J. Numer. Anal. 24 (2004) 1–19. [CrossRef] [MathSciNet]
  3. D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations. SIAM J. Sci. Comput. 27 (2005) 482–495. [CrossRef] [MathSciNet]
  4. J. Burke, A. Lewis and M. Overton, Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 22 (2002) 567–584. [CrossRef]
  5. J. Burke, A. Lewis and M. Overton, A nonsmooth, nonconvex optimization approach to robust stabilization by static output feedback and low-order controllers, in Proceedings of ROCOND 2003, Milan, Italy (2003).
  6. J. Burke, A. Lewis and M. Overton, A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Opt. 24 (2005) 567–584.
  7. J. Burke, D. Henrion, A. Lewis and M. Overton, HIFOO - A matlab Package for Fixed-Order Controller Design and H-infinity optimization, in Proceedings of ROCOND 2006, Toulouse, France (2006).
  8. J. Burke, D. Henrion, A. Lewis and M. Overton, Stabilization via nonsmooth, nonconvex optimization. IEEE Trans. Automat. Control 51 (2006) 1760–1769. [CrossRef] [MathSciNet]
  9. O. Diekmann, S. van Gils, S.V. Lunel and H.-O. Walther, Delay Equations. Appl. Math. Sci. 110, Springer-Verlag (1995).
  10. K. Engelborghs and D. Roose, On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40 (2002) 629–650. [CrossRef] [MathSciNet]
  11. K. Engelborghs, T. Luzyanina and D. Roose, Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28 (2002) 1–21. [CrossRef] [MathSciNet]
  12. K. Gu, V. Kharitonov and J. Chen, Stability of time-delay systems. Birkhauser (2003).
  13. J. Hale and S.V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences 99. Springer-Verlag, (1993).
  14. V. Kolmanovskii and A. Myshkis, Introduction to the theory and application of functional differential equations, Math. Appl. 463. Kluwer Academic Publishers (1999).
  15. T. Luzyanina and D. Roose, Equations with distributed delays: bifurcation analysis using computational tools for discrete delay equations. Funct. Differ. Equ. 11 (2004) 87–92. [MathSciNet]
  16. W. Michiels and D. Roose, An eigenvalue based approach for the robust stabilization of linear time-delay systems. Int. J. Control 76 (2003) 678–686. [CrossRef]
  17. W. Michiels, K. Engelborghs, P. Vansevenant and D. Roose, Continuous pole placement for delay equations. Automatica 38 (2002) 747–761. [CrossRef] [MathSciNet]
  18. S.-I. Niculescu, Delay effects on stability: A robust control approach, LNCIS 269. Springer-Heidelberg (2001).
  19. J.-P. Richard, Time-delay systems: an overview of some recent and open problems. Automatica 39 (2003) 1667–1694. [CrossRef] [MathSciNet]
  20. R. Seydel, Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos, Interdisciplinary Applied Mathematics 5. Springer-Verlag, 2nd edn. (1994).
  21. K. Verheyden and D. Roose, Efficient numerical stability analysis of delay equations: a spectral method, in Proceedings of the IFAC Workshop on Time-Delay Systems 2004 (2004) 209–214.
  22. K. Verheyden, K. Green and D. Roose, Numerical stability analysis of a large-scale delay system modelling a lateral semiconductor laser subject to optical feedback. Phys. Rev. E 69 (2004) 036702. [CrossRef]
  23. K. Verheyden, T. Luzyanina and D. Roose, Efficient computation of characteristic roots of delay differential equations using LMS methods. J. Comput. Appl. Math. (in press). Available online 5 March 2007.
  24. T. Vyhlídal, Analysis and synthesis of time delay system spectrum. Ph.D. thesis, Department of Mechanical Engineering, Czech Technical University, Czech Republic (2003).