Free access
Issue
ESAIM: COCV
Volume 14, Number 3, July-September 2008
Page(s) 590 - 603
DOI http://dx.doi.org/10.1051/cocv:2007065
Published online 21 December 2007
  1. J.-P. Aubin, Optima and Equilibria: an introduction to Nonlinear Analysis. Springer, 2nd Edn. (1988).
  2. A.S. Besicovitch, Almost Periodic Functions. Cambridge University Press, Cambridge (1932) (and Dover, 1954).
  3. J. Blot, Le théorème de Markov-Kakutani et la presque-périodicité, Fixed Point Theory and Applications, M. Théra and J.B. Baillon Eds., Pitman Research Notes in Mathematical Series 252, Longman, London (1991) 45–56.
  4. J. Blot, Oscillations presque-périodiques forcées d'équations d'Euler-Lagrange. Bull. Soc. Math. France 122 (1994) 285–304. [MathSciNet]
  5. J. Blot, Variational Methods for the Almost Periodic Lagrangian Oscillations. Preprint, Cahiers Eco et Maths No. 96.44 (1996).
  6. J. Blot and D. Pennequin, Spaces of quasi-periodic functions and oscillations in dynamical systems. Acta Appl. Math. 65 (2001) 83–113. [CrossRef] [MathSciNet]
  7. J. Blot and D. Pennequin, Existence and structure results on Almost Periodic solutions of Difference Equations. J. Diff. Equa. Appl. 7 (2001) 383–402. [CrossRef]
  8. H. Bohr, Almost Periodic Functions. Julius Springer, Berlin (1933) (Chelsea Publishing Company, N.Y., 1947).
  9. F. Colonius, Optimal Periodic Control, in Lect. Notes Math. 1313, Springer, Berlin (1988).
  10. C. Corduneanu, Almost Periodic Functions. Chelsea (1989).
  11. G. Da Prato and A. Ichikawa, Optimal control of linear systems with a.p. inputs. SIAM J. Control Optim. 25 (1987) 1007–1019. [CrossRef] [MathSciNet]
  12. D.G. De Figueiredo, Lectures on the Ekeland Variational Principle with Applications and Detours. Tata Institute of Fundamental Research, Bombay (1989).
  13. J. Favard, Leçons sur les fonctions presque-périodiques. Gauthiers-Villars, Paris (1933).
  14. A. Halanay, Optimal Control of Periodic solutions. Rev. Rouman. Mat. Pure Appl. 19 (1974) 3–16.
  15. V.P. Havin and N.K. Nikolski Eds., Commutative Harmonic Analysis II. Springer, Berlin (1991).
  16. E. Hewitt, K.A. Ross, Abstract Harmonic Analysis I & II. Springer, Berlin, 2nd Edn. (1979) (and 1970).
  17. F.J.M. Horn and J.E. Bailey, An application of the theorem of relaxed control to the problem of increasing catalyst selectivity. J. Opt. Theory Appl. 2 (1968) 441–449. [CrossRef]
  18. A. Kovaleva, Optimal Control of Mechanical Oscillations. Springer, Berlin (1999).
  19. J.L. Mauclaire, Intégration et Théorie des Nombres. Travaux en Cours, Hermann, Paris (1986).
  20. G.M. N'Guérékata, Almost automorphic and almost periodic functions in abstract spaces. Kluwer Academic Publishers (2001)
  21. P. Nistri, Periodic Control Problems for a class of nonlinear periodic differential systems. Nonlinear Anal. Theor. Meth. Appl. 7 (1983) 79–90. [CrossRef]
  22. D. Pennequin, Existence results on almost periodic solutions of discrete time equations. Discrete Cont. Dynam. Syst. 7 (2001) 51–60. [CrossRef]
  23. I.C. Percival, Variational principles for the invariant toroids of classical dynamics. J. Phys. A: Math. Nucl. Gen. 7 (1974) 794–802. [CrossRef]
  24. I.C. Percival, Variational principles for invariant tori and cantori. A.I.P. Conf. Proc. 57 (1979) 302–310.
  25. L. Pontryagin, Topological Groups. N.Y. Gordon and Breach (1966).
  26. J.L. Speyer, Periodic optimal flight. J. Guid. Control Dynam. 61 (1996) 745–754. [CrossRef]
  27. W. Rudin, Fourier Analysis on Groups. Interscience Publishers, N.Y. (1962).
  28. A. Weil, L'intégration dans les Groupes Topologiques. Hermann, Paris (1940).