Free access
Issue
ESAIM: COCV
Volume 14, Number 4, October-December 2008
Page(s) 657 - 677
DOI http://dx.doi.org/10.1051/cocv:2008004
Published online 18 January 2008
  1. K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behavior of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28 (2001) 215–240. [MathSciNet]
  2. A. Bamberger, J. Rauch and M. Taylor, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267–290. [MathSciNet]
  3. G. Banat, Masters of the Violin, Sonatas for the Violin, Jean-Joseph Cassanéa de Mondonville 5. Johnson Reprint (1982).
  4. D. Bernoulli, Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de 1747 and 1748. Histoire de l'Academie royale des sciences et belles lettres 9 (1753) 148–172.
  5. A.S. Birch and M.A. Srinivasan, Experimental determination of the viscoelastic properties of the human fingerpad. Touch Lab Report 14, RLE TR-632, MIT, Cambridge (1999).
  6. J.T. Cannon and S. Dostrovsky, The Evolution of Dynamics, Vibration Theory from 1687 to 1742. Springer, New York (1981).
  7. T. Christensen, Rameau and Musical Thought in the Enlightenment. Cambridge (1993).
  8. S.J. Cox, Aye there's the rub, An inquiry into how a damped string comes to rest, in Six Themes on Variation, R. Hardt Ed., AMS (2004) 37–58.
  9. S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Diff. Eq. 19 (1994) 213–243. [CrossRef] [MathSciNet]
  10. S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana U. Math. J. 44 (1995) 545–573.
  11. G. Cuzzucoli and V. Lombardo, A physical model of the classical guitar, including the player's touch. Comput. Music J. 23 (1999) 52–69. [CrossRef]
  12. F.W. Galpin, Monsieur Prin and his trumpet marine. Music Lett. 14 (1933) 18–29. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. C. Girdlestone, Jean-Philippe Rameau. Cassell, London (1957).
  14. B.-Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parenthesis of nonself-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 43 (2004) 1234–1252. [CrossRef] [MathSciNet]
  15. H. Helmholtz, On the Sensations of Tone. Dover (1954).
  16. S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Diff. Eq. 145 (1998) 184–215. [CrossRef] [MathSciNet]
  17. J. Kergomard, V. Debut and D. Matignon, Resonance modes in a 1-D medium with two purely resistive boundaries: calculation methdos, orthogogonality and completeness. J. Acoust. Soc. Am. 119 (2006) 1356–1367. [CrossRef]
  18. I. Kovács, Zur Frage der Seilschwingungen und der Seildämpfung. Die Bautechnik 59 (1982) 325–332.
  19. M.G. Krein and H. Langer, On some mathematical principles in the linear theory of damped oscillations of continua I. Integr. Equ. Oper. Theory 1 (1978) 364–399. [CrossRef]
  20. M.G. Krein and A.A. Nudelman, On direct and inverse problems for the boundary dissipation frequencies of a nonuniform string. Soviet Math. Dokl. 20 (1979) 838–841.
  21. S. Krenk, Vibrations of a taut cable with an external damper. J. Appl. Mech. 67 (2000) 772–776. [CrossRef]
  22. K.S. Liu, Energy decay problems in the design of a pointwise stabilizer for string vibrating systems. SIAM J. Control Optim. 26 (1988) 1248–1256.
  23. M. Marden, Geometry of Polynomials. AMS (1966).
  24. D.C. Miller, Anecdotal History of the Science of Sound. Macmillan, New York (1935).
  25. J.-P. Rameau, Generation Harmonique, Facsimile of 1737 Paris Ed., Broude Brothers, New York (1966).
  26. J.W.S. Rayleigh, Theory of Sound, Vol. 1. Dover (1945).
  27. F. Roberts, A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects of the same. Philosophical Transactions 16 (1692) 559–563. [CrossRef]
  28. J. Sauveur, Systéme général des intervalles des sons et son application à tous les systémes et à tous les instrumens de musique, Mémoires de l'Académie royale des sciences 1701. Amsterdam (1707) 390–482.
  29. B. Taylor, De Moti Nervi Tensi. Philosophical Transactions 28 (1713) 26–32. [CrossRef]
  30. C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788, introduction to Leonhardi Euleri Opera Omnia Vols. 10 and 11, Series 2, Leipzig (1912).
  31. J. Tyndall, Sound. D. Appleton (1875).
  32. J. Wallis, Concerning a new musical discovery. Philosophical Transactions 12 (1677) 839–842. [CrossRef]
  33. G.-Q. Xu and B.-Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim. 42 (2003) 966–984. [CrossRef] [MathSciNet]
  34. R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001).
  35. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts. Johnson Reprint (1971).
  36. P. Zukovsky, On violin harmonics. Perspectives of New Music 6 (1968) 174–181. [CrossRef]