Free access
Issue
ESAIM: COCV
Volume 15, Number 1, January-March 2009
Page(s) 49 - 67
DOI http://dx.doi.org/10.1051/cocv:2008021
Published online 23 January 2009
  1. C. Calvo-Jurado and J. Casado-Díaz, The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pures Appl. 81 (2002) 471–493. [CrossRef] [MathSciNet]
  2. C. Calvo-Jurado, J. Casado-Díaz and M. Luna-Laynez, Homogenization of elliptic problems with the Dirichlet and Neumann conditions imposed on varying subsets. Math. Meth. Appl. Sci. 30 (2007) 1611–1625. [CrossRef]
  3. J. Casado-Díaz, Homogenization of general quasi-linear Dirichlet problems with quadratic growth in perforated domains. J. Math. Pures Appl. 76 (1997) 431–476. [CrossRef] [MathSciNet]
  4. J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains. Proc. Roy. Soc. Edinburgh A 127 (1997) 457–478.
  5. J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains. SIAM J. Math. Anal. 31 (2000) 581–624. [CrossRef] [MathSciNet]
  6. D. Cionarescu and F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear partial differential equations and their applications, Collège de France seminar, Vols. II and III, H. Brézis and J.-L. Lions Eds., Research Notes in Math. 60 and 70, Pitman, London (1982) 98–138 and 154–78.
  7. G. Dal Maso and A. Defranceschi, Limits of nonlinear Dirichlet problems in varying domains. Manuscripta Math. 61 (1988) 251–278. [CrossRef] [MathSciNet]
  8. G. Dal Maso and A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Mod. Meth. Appl. Sci. 3 (1994) 373–407. [CrossRef] [MathSciNet]
  9. G. Dal Maso and U. Mosco, Wiener-criterion and Formula -convergence. Appl. Math. Optim. 15 (1987) 15–63. [CrossRef] [MathSciNet]
  10. G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Sc. Norm. Sup. Pisa 7 (1997) 765–803.
  11. G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 445–486. [CrossRef] [MathSciNet]
  12. G. Dal Maso, A. Garroni and I.V. Skrypnik, A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators. J. Anal. Math. 71 (1997) 263–313. [CrossRef] [MathSciNet]
  13. A. Damlamian and T. Li, Boundary homogenization for elliptic problems. J. Math. Pures Appl. 66 (1987) 351–361. [MathSciNet]
  14. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992).
  15. H. Federer and W.P. Ziemer, The Lebesgue set of a function whose distribution derivaties are p-th power sumable. Indiana Univ. Math. J. 22 (1972) 139–158. [CrossRef] [MathSciNet]
  16. J. Leray and J.-L. Lions, Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97–107. [MathSciNet]
  17. J. Necas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
  18. J. Serrin, Local behaviour of solutions of quasilinear equations. Acta Math. 111 (1964) 302–347.
  19. I.V. Skrypnik, Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains. Mat. Sb. 184 (1993) 67–90.
  20. I.V. Skrypnik, Averaging of quasilinear parabolic problems in domains with fine-grained boundary. Diff. Equations 31 (1995) 327–339.
  21. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989).