Free access
Issue
ESAIM: COCV
Volume 15, Number 3, July-September 2009
Page(s) 626 - 652
DOI http://dx.doi.org/10.1051/cocv:2008042
Published online 19 July 2008
  1. R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975).
  2. A. Battermann and M. Heinkenschloss, Preconditioners for Karush-Kuhn-Tucker matrices arising in the optimal control of distributed systems, in Control and estimation of distributed parameter systems (Vorau, 1996), Internat. Ser. Numer. Math. 126 (1998) 15–32.
  3. A. Battermann and E.W. Sachs, Block preconditioners for KKT systems in PDE-governed optimal control problems, in Fast solution of discretized optimization problems (Berlin, 2000), Internat. Ser. Numer. Math. 138 (2001) 1–18.
  4. G. Biros and O. Ghattas, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. I. The Krylov-Schur solver. SIAM J. Sci. Comput. 27 (2005) 687–713. [CrossRef] [MathSciNet]
  5. R. Dautray and J.-L. Lions, Evolution Problems I, Mathematical Analysis and Numerical Methods for Science and Technology 5. Springer-Verlag, Berlin (1992).
  6. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, Rhode Island (1998).
  7. C. Geiger and C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben. Springer-Verlag, Berlin (2002).
  8. W. Hackbusch, Optimal Formula error estimates for a parabolic Galerkin method. SIAM J. Numer. Anal. 18 (1981) 681–692. [CrossRef] [MathSciNet]
  9. M. Hintermüller, Mesh-independence and fast local convergence of a primal-dual active-set method for mixed control-state constrained elliptic control problems. ANZIAM Journal 49 (2007) 1–38. [CrossRef] [MathSciNet]
  10. M. Hintermüller and M. Hinze, A SQP-semismooth Newton-type algorithm applied to control of the instationary Navier-Stokes system subject to control constraints. SIAM J. Opt. 16 (2006) 1177–1200. [CrossRef]
  11. M. Hintermüller and M. Ulbrich, A mesh-independence result for semismooth Newton methods. Math. Program. Ser. B 101 (2004) 151–184.
  12. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Opt. 13 (2003) 865–888. [CrossRef] [MathSciNet]
  13. M. Hintermüller, S. Volkwein and F. Diwoky, Fast solution techniques in constrained optimal boundary control of the semilinear heat equation. Internat. Ser. Numer. Math. 155 (2007) 119–147. [CrossRef]
  14. J.-L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin (1971).
  15. K. Malanowski, Convergence of approximations versus regularity of solutions for convex, control-constrained optimal control problems. Appl. Math. Optim. 8 (1981) 69–95. [CrossRef]
  16. J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in several Variables, Computer Science and Applied Mathematics. Academic Press, New York (1970).
  17. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Mathematics and Applications 4. D. Reichel Publishing Company, Boston-Dordrecht-London (1982).
  18. R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications. North-Holland, Amsterdam (1979).
  19. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publishing Company, Amsterdam (1978).
  20. F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints. SIAM J. Opt. 15 (2005) 616–634. [CrossRef]
  21. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen. Vieweg Verlag, Wiesbaden (2005).