Free access
Issue
ESAIM: COCV
Volume 15, Number 3, July-September 2009
Page(s) 576 - 598
DOI http://dx.doi.org/10.1051/cocv:2008041
Published online 24 June 2008
  1. L. Ambrosio, Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291–322. [CrossRef] [MathSciNet]
  2. L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ -convergence. Comm. Pure Appl. Math. 43 (1990) 999–1036. [CrossRef] [MathSciNet]
  3. L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992) 105–123. [MathSciNet]
  4. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).
  5. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13. Birkhäuser Boston Inc., Boston, MA (1994).
  6. B. Bourdin, Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411–430. [CrossRef] [MathSciNet]
  7. A. Braides, Γ-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press (2002).
  8. E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195–218. [CrossRef] [MathSciNet]
  9. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992).
  10. G.A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319–1342. [CrossRef] [MathSciNet]
  11. J.E. Hutchinson and Y. Tonegawa, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000) 49–84. [CrossRef] [MathSciNet]
  12. L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526–529. [MathSciNet]
  13. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII (1989) 577–685.
  14. P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986).
  15. E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston Inc., Boston, MA (2007).
  16. Y. Tonegawa, Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 993–1019. [CrossRef] [MathSciNet]
  17. Y. Tonegawa, A diffused interface whose chemical potential lies in a Sobolev space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005) 487–510. [MathSciNet]
  18. T. Wittman, Lost in the supermarket: decoding blurry barcodes. SIAM News 37 September (2004).