Free access
Issue
ESAIM: COCV
Volume 15, Number 4, October-December 2009
Page(s) 763 - 781
DOI http://dx.doi.org/10.1051/cocv:2008052
Published online 19 July 2008
  1. J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Contr. Opt. 31 (1993) 1340–1359. [CrossRef]
  2. M.J. Cánovas, F.J. Gómez-Senent and J. Parra, On the Lipschitz modulus of the argmin mapping in linear semi-infinite optimization. Set-Valued Anal. (2007) Online First.
  3. M.J. Cánovas, D. Klatte, M.A. López and J. Parra, Metric regularity in convex semi-infinite optimization under canonical perturbations. SIAM J. Optim. 18 (2007) 717–732. [CrossRef] [MathSciNet]
  4. M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz behavior of convex semi-infinite optimization problems: A variational approach. J. Global Optim. 41 (2008) 1–13.
  5. M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Stability of indices in the KKT conditions and metric regularity in convex semi-infinite optimization. J. Optim. Theory Appl. (2008) Online First.
  6. M.J. Cánovas, A. Hantoute, M.A. López and J. Parra, Lipschitz modulus of the optimal set mapping in convex semi-infinite optimization via minimal subproblems. Pacific J. Optim. (to appear).
  7. E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acad. Nat. Lincei, Rend, Cl. Sci. Fiz. Mat. Natur. 68 (1980) 180–187.
  8. V.F. Demyanov and A.M. Rubinov, Quasidifferentiable functionals. Dokl. Akad. Nauk SSSR 250 (1980) 21–25 (in Russian). [MathSciNet]
  9. V.F. Demyanov and A.M. Rubinov, Constructive nonsmooth analysis, Approximation & Optimization 7. Peter Lang, Frankfurt am Main (1995).
  10. A.V. Fiacco and G.P. McCormick, Nonlinear programming. Wiley, New York (1968).
  11. M.A. Goberna and M.A. López, Linear Semi-Infinite Optimization. John Wiley & Sons, Chichester, UK (1998).
  12. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms, I. Fundamentals, Grundlehren der Mathematischen Wissenschaften 305. Springer-Verlag, Berlin (1993).
  13. A.D. Ioffe, Metric regularity and subdifferential calculus. Uspekhi Mat. Nauk 55 (2000) 103–162; English translation in Math. Surveys 55 (2000) 501–558.
  14. A.D. Ioffe, On rubustness of the regularity property of maps. Control Cybern. 32 (2003) 543–554.
  15. D. Klatte and B. Kummer, Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Kluwer Academic Publ., Dordrecht (2002).
  16. D. Klatte and B. Kummer, Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16 (2005) 96–119. [CrossRef] [MathSciNet]
  17. D. Klatte and G. Thiere, A note of Lipschitz constants for solutions of linear inequalities and equations. Linear Algebra Appl. 244 (1996) 365–374. [CrossRef] [MathSciNet]
  18. P.-J. Laurent, Approximation et Optimisation. Hermann, Paris (1972).
  19. W. Li, The sharp Lipschitz constants for feasible and optimal solutions of a perturbed linear program. Linear Algebra Appl. 187 (1993) 15–40. [CrossRef] [MathSciNet]
  20. B.S. Mordukhovich, Variational Analysis and Generalized Differentiation I. Springer-Verlag, Berlin (2006).
  21. G. Nürnberger, Unicity in semi-infinite optimization, in Parametric Optimization and Approximation, B. Brosowski, F. Deutsch Eds., Birkhäuser, Basel (1984) 231–247.
  22. S.M. Robinson, Bounds for error in the solution set of a perturbed linear program. Linear Algebra Appl. 6 (1973) 69–81. [CrossRef]
  23. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, USA (1970).
  24. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer-Verlag, Berlin (1997).
  25. M. Studniarski and D.E. Ward, Weak sharp minima: Characterizations and sufficient conditions. SIAM J. Contr. Opt. 38 (1999) 219–236. [CrossRef]
  26. M. Valadier, Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes. C. R. Acad. Sci. Paris 268 (1969) 39–42.