Free access
Issue
ESAIM: COCV
Volume 15, Number 4, October-December 2009
Page(s) 839 - 862
DOI http://dx.doi.org/10.1051/cocv:2008051
Published online 19 July 2008
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321–358. [CrossRef]
  2. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Berlin, Springer-Verlag (2004).
  3. V.I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations. Berlin, Springer-Verlag (1988).
  4. V.I. Arnold, Ordinary differential equations. Berlin, Springer-Verlag (1992).
  5. A. BellaFormula che, The tangent space in sub-Riemannian geometry. Progress in Mathematics 144 (1996) 1–78.
  6. J.-H. Cheng and J.-F. Hwang, Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Austral. Math. Soc. 70 (2004) 507–520. [CrossRef] [MathSciNet]
  7. J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005) 129–177.
  8. J.-H. Cheng, J.-F. Hwang and P. Yang, Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337 (2007) 253–293. [CrossRef] [MathSciNet]
  9. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24 (2006) 307–326. [CrossRef] [MathSciNet]
  10. B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321 (2001) 479–531. [CrossRef] [MathSciNet]
  11. N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49 (1996) 479–531.
  12. N. Garofalo and S. Pauls, The Bernstein problem in the Heisenberg group. Preprint (2004) arXiv:math/0209065v2.
  13. R. Hladky and S. Pauls, Minimal surfaces in the roto-translational group with applications to a neuro-biological image completion model. Preprint (2005) arXiv:math/0509636v1.
  14. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Providence, R.I. American Mathematical Society (2002).
  15. S. Pauls, Minimal surfaces in the Heisenberg group. Geom. Dedicata 104 (2004) 201–231. [CrossRef] [MathSciNet]
  16. M. Ritoré and C. Rosales, Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group Formula . J. Geom. Anal. 16 (2006) 703–720. [MathSciNet]
  17. H. Whitney, The general type of singularity of a set of Formula smooth functions of n variables. Duke Math. J. 10 (1943) 161–172. [CrossRef] [MathSciNet]