Free access
Issue
ESAIM: COCV
Volume 15, Number 4, October-December 2009
Page(s) 895 - 913
DOI http://dx.doi.org/10.1051/cocv:2008056
Published online 20 August 2008
  1. D. Applegate, R. Bixby, V. Chavátal and W. Cook, On the solution of traveling salesman problems, in Doc. Math., Extra volume ICM 1998 III, Berlin (1998) 645–656.
  2. S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45 (1998) 753–782. [CrossRef] [MathSciNet]
  3. S. Arora, Approximation schemes for NP-hard geometric optimization problems: a survey. Math. Program. 97 (2003) 43–69. [MathSciNet]
  4. S. Arora, P. Raghavan and S. Rao, Approximation schemes for Euclidean k-medians and related problems, in ACM Symposium on Theory of Computing (1998) 106–113.
  5. H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: I. The epigraphical distance. Trans. Amer. Math. Soc. 328 (1991) 695–729. [CrossRef] [MathSciNet]
  6. H. Attouch and R.J.-B. Wets, Quantitative stability of variational systems: II. A framework for nonlinear conditioning. SIAM J. Optim. 3 (1993) 359–381. [CrossRef] [MathSciNet]
  7. S. Äyrämö, Knowledge Mining Using Robust Clustering. Jyväskylä Studies in Computing 63. University of Jyväskylä, Ph.D. thesis (2006).
  8. J.J. Bentley, Fast algorithms for geometric traveling salesman problems. ORSA J. Comput. 4 (1992) 887–411.
  9. G. Buttazzo and E. Stepanov, Minimization problems for average distance functionals, in Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara Ed., Quaderni di Matematica, Seconda Università di Napoli, Caserta 14 (2004) 47–83.
  10. K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126 (2000) 106–130. [CrossRef]
  11. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms I-II. Springer (1993).
  12. R. Horst and P.M. Pardolos Eds., Handbook of Global Optimization. Kluwer Academic Publishers (1995).
  13. D.S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in local optimization, in Local Search in Combinatorial Optimization, E. Aarts and J. Lenstra Eds., John Wiley and Sons (1997) 215–310.
  14. D.S. Johnson and L.A. McGeoch, Experimental analysis of heuristics for the STSP, in The Traveling Salesman Problem and Its Variations, G. Gutin and A.P. Punnen Eds., Springer (2002) 369–443.
  15. J.D. Litke, An improved solution to the traveling salesman problem with thousands of nodes. Commun. ACM 27 (1984) 1227–1236. [CrossRef]
  16. D.S. Mitrinović, Analytic Inequalities. Springer-Verlag (1970).
  17. S. Peyton Jones, Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press (2003).
  18. P. Polak and G. Wolansky, The lazy travelling salesman problem in Formula . ESAIM: COCV 13 (2007) 538–552. [CrossRef] [EDP Sciences]
  19. G. Reinelt, TSPLIB – A traveling salesman problem library. ORSA J. Comput. 3 (1991) 376–384.
  20. R.T. Rockafellar, Convex Analysis. Princeton University Press (1972).
  21. R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998).
  22. T. Valkonen, Convergence of a SOR-Weiszfeld type algorithm for incomplete data sets. Numer. Funct. Anal. Optim. 27 (2006) 931–952. [CrossRef] [MathSciNet]
  23. T. Valkonen and T. Kärkkäinen, Clustering and the perturbed spatial median. Computer and Mathematical Modelling (submitted).