Free access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 1 - 22
DOI http://dx.doi.org/10.1051/cocv:2008060
Published online 21 October 2008
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
  2. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), M. Rascle, D. Serre and M. Slemrod Eds., Springer, Berlin (1989) 207–215.
  3. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1987) 13–52. [CrossRef] [MathSciNet]
  4. S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176 (2005) 103–147. [CrossRef] [MathSciNet]
  5. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Technical report, Scuola Normale Superiore, Pisa (2006).
  6. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2 (2007) 1–36 (electronic).
  7. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667–689. [CrossRef] [MathSciNet]
  8. R. Engelking, General topology. Translated from the Polish by the author, Monografie Matematyczne 60 [Mathematical Monographs]. PWN – Polish Scientific Publishers, Warsaw (1977).
  9. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, USA (1998).
  10. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, USA (1992).
  11. G.B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons Inc., New York, first edition (1999); Wiley-Interscience, second edition.
  12. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet]
  13. A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. [CrossRef] [EDP Sciences]
  14. M. Kružík and T. Roubíček, On the measures of DiPerna and Majda. Math. Bohem. 122 (1997) 383–399.
  15. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73–99.
  16. A. Mielke, Evolution of rate-independent systems, in Evolutionary equations II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005) 461–559.
  17. A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571–597 (electronic). [CrossRef] [MathSciNet] [PubMed]
  18. A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137–177. [CrossRef] [MathSciNet]
  19. M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397–462. [CrossRef]
  20. T. Roubíček, Relaxation in optimization theory and variational calculus, de Gruyter Series in Nonlinear Analysis and Applications 4. Walter de Gruyter & Co., Berlin (1997).
  21. M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differential Equations 7 (1982) 959–1000. [CrossRef] [MathSciNet]
  22. J. Souček, Spaces of functions on domain Formula , whose Formula -th derivatives are measures defined on Formula . Časopis Pěst. Mat. 97 (1972) 10–46.
  23. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium IV, Pitman, Boston, USA (1979) 136–212.