Free access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 221 - 246
DOI http://dx.doi.org/10.1051/cocv:2008074
Published online 19 December 2008
  1. G. Alessandrini, Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv. 69 (1994) 142–154. [CrossRef] [MathSciNet]
  2. P. Bérard, Inégalités isopérimétriques et applications : domaines nodaux des fonctions propres. Exposé XI, Séminaire Goulaouic-Meyer-Schwartz (1982).
  3. L. Bers, Local behavior of solutions of general linear elliptic equations. Commun. Pure Appl. Math. 8 (1955) 473–496. [CrossRef] [MathSciNet]
  4. V. Bonnaillie-Noël and G. Vial, Computations for nodal domains and spectral minimal partitions. http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions (2007).
  5. D. Bucur, G. Buttazzo and A. Henrot, Existence results for some optimal partition problems. Adv. Math. Sci. Appl. 8 (1998) 571–579. [MathSciNet]
  6. D. Bucur, B. Bourdin and E. Oudet, Numerical study of an optimal partitioning problem related to eigenvalues. (In preparation).
  7. L.A. Caffarelli and F.H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007) 5–18. [CrossRef] [MathSciNet]
  8. M. Conti, S. Terracini and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J. Funct. Anal. 198 (2003) 160–196. [CrossRef] [MathSciNet]
  9. M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction-diffusion systems. Indiana Univ. Math. J. 54 (2005) 779–815. [CrossRef] [MathSciNet]
  10. M. Conti, S. Terracini and G. Verzini, On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula. Calc. Var. 22 (2005) 45–72. [CrossRef] [MathSciNet]
  11. O. Cybulski, V. Babin and R. Hołyst, Minimization of the Renyi entropy production in the space-partitioning process. Phys. Rev. E 71 (2005) 46130. [CrossRef]
  12. B. Helffer, Domaines nodaux et partitions spectrales minimales (d'après B. Helffer, T. Hoffmann-Ostenhof et S. Terracini). Séminaire EDP de l'École Polytechnique (Déc. 2006).
  13. B. Helffer, On nodal domains and minimal spectral partitions. Conference in Montreal (April 2008).
  14. B. Helffer and T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Mosc. Math. J. 7 (2007) 67–84. [MathSciNet]
  15. B. Helffer and T. Hoffmann-Ostenhof, On minimal partitions for the disk and the annulus. Provisory notes in February 2007.
  16. B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004.
  17. D. Jakobson, M. Levitin, N. Nadirashvili and I. Polterovic, Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond. J. Comput. Appl. Math. 194 (2006) 141–155. [CrossRef] [MathSciNet]
  18. N. Landais, Problèmes de régularité en optimisation de forme. Ph.D. Thesis, ENS Cachan Bretagne, France (2007).
  19. M. Levitin, L. Parnovski and I. Polterovich, Isospectral domains with mixed boundary conditions. J. Phys. A 39 (2006) 2073–2082. [CrossRef] [MathSciNet]
  20. D. Martin, The finite element library Mélina. http://perso.univ-rennes1.fr/daniel.martin/melina (2006).
  21. A. Melas, On the nodal line of the second eigenfunction of the Laplacian on Formula . J. Differential Geom. 35 (1992) 255–263. [MathSciNet]
  22. A. Pleijel, Remarks on Courant's nodal theorem. Comm. Pure. Appl. Math 9 (1956) 543–550. [CrossRef] [MathSciNet]
  23. G. Pólya, On the eigenvalues of vibrating membranes. Proc. London Mah. Soc. 3 (1961) 419–433.