Free access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 92 - 110
DOI http://dx.doi.org/10.1051/cocv:2008065
Published online 21 October 2008
  1. I. Aganović, J. Tambača and Z. Tutek, Derivation and justification of the models of rods and plates from linearized three-dimensional micropolar elasticity. J. Elasticity 84 (2006) 131–152. [CrossRef] [MathSciNet]
  2. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993).
  3. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976/1977) 337–403.
  4. P.G. Ciarlet, Mathematical elasticity – Volume I: Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam (1988).
  5. E. Cosserat and F. Cosserat, Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils [Theory of deformable bodies], Paris (1909).
  6. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin (1989).
  7. A.C. Eringen, Microcontinuum Field Theories – Volume 1: Foundations and Solids. Springer-Verlag, New York (1999).
  8. G.B. Folland, Real analysis, Modern techniques and their applications. John Wiley & Sons, Inc., New York (1984).
  9. I. Hlaváček and M. Hlaváček, On the existence and uniqueness of solution and some variational principles in linear theories of elasticity with couple-stresses. I. Cosserat continuum. Appl. Math. 14 (1969) 387–410.
  10. J. Jeong and P. Neff, Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions. Math. Mech. Solids (2008) DOI: 10.1177/1081286508093581. Preprint 2550 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html.
  11. P.M. Mariano and G. Modica, Ground states in complex bodies. ESAIM: COCV (2008) published online, DOI: 10.1051/cocv:2008036.
  12. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125–149. [CrossRef] [MathSciNet]
  13. P. Neff, On Korn's first inequality with nonconstant coefficients. Proc. R. Soc. Edinb. Sect. A 132 (2002) 221–243. [CrossRef]
  14. P. Neff, Existence of minimizers for a geometrically exact Cosserat solid. Proc. Appl. Math. Mech. 4 (2004) 548–549. [CrossRef]
  15. P. Neff, A geometrically exact Cosserat-shell model including size effects, avoiding degeneracy in the thin shell limit, Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Cont. Mech. Thermodynamics 16 (2004) 577–628. [CrossRef]
  16. P. Neff, The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86 (2006) 892–912. Preprint 2409 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef] [MathSciNet]
  17. P. Neff, Existence of minimizers for a finite-strain micromorphic elastic solid. Proc. Roy. Soc. Edinb. A 136 (2006) 997–1012. Preprint 2318 available at http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/pp04.html. [CrossRef]
  18. P. Neff, A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44 (2006) 574–594. [CrossRef]
  19. P. Neff, A geometrically exact planar Cosserat shell-model with microstructure. Existence of minimizers for zero Cosserat couple modulus. Math. Meth. Appl. Sci. 17 (2007) 363–392. Preprint 2357 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef]
  20. P. Neff and K. Chelminski, A geometrically exact Cosserat shell-model for defective elastic crystals. Justification via Formula -convergence. Interfaces Free Boundaries 9 (2007) 455–492. [CrossRef] [MathSciNet]
  21. P. Neff and S. Forest, A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elasticity 87 (2007) 239–276. [CrossRef] [MathSciNet]
  22. P. Neff and I. Münch, Curl bounds Grad on SO(3). ESAIM: COCV 14 (2008) 148–159. Preprint 2455 available at http://www3.mathematik.tu-darmstadt.de/fb/mathe/bibliothek/preprints.html. [CrossRef] [EDP Sciences]
  23. W. Nowacki, Theory of asymmetric elasticity. Oxford, Pergamon (1986).
  24. W. Pompe, Korn's first inequality with variable coefficients and its generalizations. Commentat. Math. Univ. Carolinae 44 (2003) 57–70.
  25. J. Tambača and I. Velčić, Derivation of a model of nonlinear micropolar plate. (Submitted).