Free access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 111 - 131
DOI http://dx.doi.org/10.1051/cocv:2008066
Published online 21 October 2008
  1. E. Acerbi and N. Fusco, A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281.
  2. E. Acerbi and N. Fusco, Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 603–636. [MathSciNet]
  3. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet]
  4. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 175–188. [MathSciNet]
  5. M. Carozza and A. Passarelli di Napoli, Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh 133 (2003) 1249–1262. [CrossRef] [MathSciNet]
  6. M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 175 (1998) 141–164. [CrossRef] [MathSciNet]
  7. F. Duzaar, J.F. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. 184 (2005) 421–448. [CrossRef] [MathSciNet]
  8. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227–252.
  9. C. Fefferman and E.M. Stein, Hp spaces of several variables. Acta Math. 129 (1972) 137–193. [CrossRef] [MathSciNet]
  10. N.B. Firoozye, Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).
  11. E. Giusti, Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003).
  12. E. Giusti and M. Miranda, Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968) 173–184.
  13. Y. Grabovsky and T. Mengesha, Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations 29 (2007) 59–83. [CrossRef] [MathSciNet]
  14. F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415–426. [CrossRef] [MathSciNet]
  15. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63–89. [CrossRef] [MathSciNet]
  16. R. Moser, Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).
  17. S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003) 715–742. [CrossRef] [MathSciNet]