Free access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 400 - 419
DOI http://dx.doi.org/10.1051/cocv/2009003
Published online 21 April 2009
  1. P. Courtier, J.N. Thepaut and A. Hollingsworth, A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. Roy. Meteor. Soc. 120 (1994) 1367–1387. [CrossRef]
  2. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics 749. Springer-Verlag, Berlin (1979).
  3. C. Hu, R. Temam and M. Ziane, Regularity results for linear elliptic problems related to the primitive equations. Chinese Ann. Math. Ser. B 23 (2002) 277–292. Dedicated to the memory of Jacques-Louis Lions. [CrossRef] [MathSciNet]
  4. I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean. Nonlinearity 20 (2007) 2739–2753. [CrossRef] [MathSciNet]
  5. F.-X. Le Dimet, A general formalism of variational analysis. Technical Report 73091 22, CIMMS, Norman, Oklahoma, USA (1982).
  6. F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Series A 38 (1986) 97. [CrossRef]
  7. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968).
  8. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).
  9. J.-L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992) 237–288. [CrossRef] [MathSciNet]
  10. G. Madec, P. Delecluse, M. Imbard and C. Lévy, OPA 8.1 Ocean General Circulation Model reference manual. Note du Pôle de Modélisation, Institut Pierre Simon Laplace, France (1999).
  11. M. Nodet, Variational assimilation of Lagrangian data in oceanography. Inverse Problems 22 (2006) 245–263. [CrossRef] [MathSciNet]
  12. R. Temam, Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications 2. North-Holland Publishing Co., Amsterdam (1977).
  13. R. Temam, Navier-Stokes equations, Theory and numerical analysis. Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI (2001).
  14. R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics III, North-Holland, Amsterdam (2004) 535–657.
  15. E. Titi and C. Cao, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Annals Math. 166 (2007) 245–267. [CrossRef]