Free access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 327 - 336
DOI http://dx.doi.org/10.1051/cocv:2008072
Published online 19 December 2008
  1. R.A. Adams, Sobolev spaces. Academic Press, New York (1975).
  2. A. Alvino, L. Boccardo, V. Ferone, L. Orsina and G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity. Ann. Mat. Pura Appl. (4) 182 (2003) 53–79. [CrossRef] [MathSciNet]
  3. D. Arcoya and P.J. Martínez-Aparicio, Quasilinear equations with natural growth. Rev. Mat. Iberoamericana 24 (2008) 597–616.
  4. D. Arcoya, J. Carmona and P.J. Martínez-Aparicio, Elliptic obstacle problems with natural growth on the gradient and singular nonlinear terms. Adv. Nonlinear Stud. 7 (2007) 299–317. [MathSciNet]
  5. D. Arcoya, J. Carmona, T. Leonori, P.J. Martínez-Aparicio, L. Orsina and F. Petitta, Existence and nonwxistence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. (submitted).
  6. D. Arcoya, S. Barile and P.J. Martínez-Aparicio, Singular quasilinear equations with quadratic growth in the gradient without sign condition. J. Math. Anal. Appl. 350 (2009) 401–408. [CrossRef] [MathSciNet]
  7. G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 (1995) 77–101. [CrossRef] [MathSciNet]
  8. G. Barles and A. Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations. Ann. Scuola Norm. Super. Pisa Cl. Sci. (5) 5 (2006) 107–136.
  9. G. Barles, A.P. Blanc, C. Georgelin and M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) 381–404. [MathSciNet]
  10. P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J.L. Vázquez, An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm Sup. Pisa Cl. Sci. (4) 22 (1995) 241–273. [MathSciNet]
  11. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Math. Acad. Sci. Paris 334 (2002) 757–762. [CrossRef] [MathSciNet]
  12. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right hand side in L1(Ω). ESAIM: COCV 8 (2002) 239–272 [CrossRef] [EDP Sciences]
  13. M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal. 63 (2005) 153–170. [CrossRef] [MathSciNet]
  14. D. Blanchard, F. Désir and O. Guibé, Quasi-linear degenerate elliptic problems with L1 data. Nonlinear Anal. 60 (2005) 557–587. [MathSciNet]
  15. L. Boccardo, Dirichlet problems with singular and gradient quadratic lower order terms. ESAIM: COCV 14 (2008) 411–426. [CrossRef] [EDP Sciences]
  16. L. Boccardo and L. Orsina, Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 95–130. [MathSciNet]
  17. L. Boccardo, F. Murat and J.P. Puel, Existence de solutions non bornées pour certaines équations quasi-linéaires. Portugal. Math. 41 (1982) 507–534. [MathSciNet]
  18. L. Boccardo, F. Murat and J.P. Puel, Résultats d'existence pour certains problèmes elliptiques quasilinéaires. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984) 213–235. [MathSciNet]
  19. L. Boccardo, A. Dall'Aglio and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena 46 Suppl. (1998) 51–81.
  20. L. Boccardo, S. Segura de León and C. Trombetti, Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J. Math. Pures Appl. 80 (2001) 919–940. [CrossRef] [MathSciNet]
  21. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations. Nonlinear Anal. T.M.A. 10 (1986) 55–64. [CrossRef] [MathSciNet]
  22. J. Casado-Díaz, F. Murat and A. Porretta, Uniqueness of the Neumann condition and comparison results for Dirichlet pseudo-monotone problems, in The first 60 years of nonlinear analysis of Jean Mawhin, World Sci. Publ., River Edge, NJ (2004) 27–40.
  23. G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) 741–808. [MathSciNet]
  24. D. Giachetti and F. Murat, An elliptic problem with a lower order term having singular behaviour. Boll. Un. Mat. Ital. B (to appear).
  25. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York (1983).
  26. L. Korkut, M. Pašić and D. Žubrinić, Some qualitative properties of solutions of quasilinear elliptic equations and applications. J. Differ. Equ. 170 (2001) 247–280. [CrossRef]
  27. A. Porretta, Uniqueness of solutions of some elliptic equations without condition at infinity. C. R. Math. Acad. Sci. Paris 335 (2002) 739–744. [CrossRef] [MathSciNet]
  28. A. Porretta, Some uniqueness results for elliptic equations without condition at infinity. Commun. Contemp. Math. 5 (2003) 705–717. [CrossRef] [MathSciNet]
  29. A. Porretta, Uniqueness of solutions for some nonlinear Dirichlet problems. NoDEA Nonlinear Differ. Equ. Appl. 11 (2004) 407–430. [CrossRef]
  30. A. Porretta and S. Segura de León, Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85 (2006) 465–492. [CrossRef] [MathSciNet]
  31. S. Segura de León, Existence and uniqueness for L1 data of some elliptic equations with natural growth. Adv. Differential Equations 8 (2003) 1377–1408. [MathSciNet]