Free access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 275 - 297
DOI http://dx.doi.org/10.1051/cocv:2008075
Published online 19 December 2008
  1. A. Agrachev, Methods of control theory in nonholonomic geometry, in Proc. ICM-94, Birkhauser, Zürich (1995) 1473–1483.
  2. A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321–358. [CrossRef]
  3. A. Agrachev, Compactness for sub-Riemannian length-minimizers and subanalyticity. Rend. Sem. Mat. Univ. Politec. Torino 56 (2001) 1–12.
  4. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint, Encyclopedia of Mathematical Sciences 87. Springer (2004).
  5. A. Bellaiche, The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 1–78.
  6. B. Bonnard and M. Chyba, Singular trajectories and their role in control theory. Springer-Verlag, Berlin (2003).
  7. U. Boscain and B. Piccoli, Optimal Synthesis for Control Systems on 2-D Manifolds, SMAI 43. Springer (2004).
  8. U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and lens spaces. SIAM J. Contr. Opt. 47 (2008) 1851–1878. [CrossRef] [MathSciNet]
  9. U. Boscain, T. Chambrion and J.P. Gauthier, On the K+P problem for a three-level quantum system: Optimality implies resonance. J. Dyn. Contr. Syst. 8 (2002) 547–572. [CrossRef]
  10. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, Appl. Math. Series 2. American Institute of Mathematical Sciences (2007).
  11. R.W. Brockett, Explicitly solvable control problems with nonholonomic constraints, in Proceedings of the 38th IEEE Conference on Decision and Control 1 (1999) 13–16.
  12. Y. Chitour and M. Sigalotti, Dubins' problem on surfaces. I. Nonnegative curvature J. Geom. Anal. 15 (2005) 565–587.
  13. Y. Chitour, F. Jean and E. Trélat, Genericity results for singular curves. J. Differential Geometry 73 (2006) 45–73.
  14. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307–326. [CrossRef] [MathSciNet]
  15. M. Gromov, Carnot-Caratheodory spaces seen from within, in Sub-Riemannian Geometry, Progress in Mathematics 144, Birkhäuser, Basel (1996) 79–323.
  16. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997).
  17. V. Jurdjevic, Optimal Control, Geometry and Mechanics, in Mathematical Control Theory, J. Bailleu and J.C. Willems Eds., Springer, New York (1999) 227–267.
  18. V. Jurdjevic, Hamiltonian Point of View on non-Euclidean Geometry and Elliptic Functions. System Control Lett. 43 (2001) 25–41. [CrossRef]
  19. J. Petitot, Vers une Neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux, in Mathématiques, Informatique et Sciences Humaines 145, Special issue, EHESS, Paris (1999) 5–101.
  20. L.S. Pontryagin, V. Boltianski, R. Gamkrelidze and E. Mitchtchenko, The Mathematical Theory of Optimal Processes. John Wiley and Sons, Inc. (1961).
  21. J.A. Reeds and L.A. Shepp, Optimal paths for a car that goes both forwards and backwards. Pacific J. Math. 145 (1990) 367–393. [MathSciNet]
  22. D. Rolfsen, Knots and links. Publish or Perish, Houston (1990).
  23. Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Contr. Syst. 14 (2008) 169–234. [CrossRef] [MathSciNet]
  24. M. Spivak, A comprehensive introduction to differential geometry. Second edition, Publish or Perish, Inc., Wilmington, Del. (1979).