Free access
Issue
ESAIM: COCV
Volume 16, Number 2, April-June 2010
Page(s) 472 - 502
DOI http://dx.doi.org/10.1051/cocv/2009006
Published online 21 April 2009
  1. J.J. Alibert and G. Bouchitté, Non-uniform integrability and generalized Young measures. J. Convex Anal. 4 (1997) 125–145.
  2. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and Continuum Models of Phase Transition, M. Rascle, D. Serre and M. Slemrod Eds., Lect. Notes Phys. 344, Springer, Berlin (1989) 207–215.
  3. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225–253. [CrossRef] [MathSciNet]
  4. J.M. Ball and K.-W. Zhang, Lower semicontinuity of multiple integrals and the biting lemma. Proc. Roy. Soc. Edinb. A 114 (1990) 367–379.
  5. A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity: relaxation and homogenization. ESAIM: COCV 5 (2000) 539–577. [CrossRef] [EDP Sciences]
  6. J.K. Brooks and R.V. Chacon, Continuity and compactness in measure. Adv. Math. 37 (1980) 16–26. [CrossRef]
  7. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer, Berlin (1989).
  8. A. DeSimone, Energy minimizers for large ferromagnetic bodies. Arch. Rat. Mech. Anal. 125 (1993) 99–143. [CrossRef] [MathSciNet]
  9. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108 (1987) 667–689. [CrossRef] [MathSciNet]
  10. N. Dunford and J.T. Schwartz, Linear Operators, Part I. Interscience, New York (1967).
  11. R. Engelking, General topology. Second Edition, PWN, Warszawa (1985).
  12. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, Inc. Boca Raton (1992).
  13. I. Fonseca, Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinb. A 120 (1992) 95–115.
  14. I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: Lp Spaces. Springer (2007).
  15. I. Fonseca and S. Müller, Formula -quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [CrossRef] [MathSciNet]
  16. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet]
  17. J. Hogan, C. Li, A. McIntosh and K. Zhang, Global higher integrability of Jacobians on bounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 193–217. [CrossRef] [MathSciNet]
  18. A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. [CrossRef] [EDP Sciences]
  19. D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients. Arch. Rat. Mech. Anal. 115 (1991) 329–365. [CrossRef] [MathSciNet]
  20. D. Kinderlehrer and P. Pedregal, Weak convergence of integrands and the Young measure representation. SIAM J. Math. Anal. 23 (1992) 1–19. [CrossRef] [MathSciNet]
  21. D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59–90. [CrossRef] [MathSciNet]
  22. J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313 (1999) 653–710. [CrossRef] [MathSciNet]
  23. M. Kružík and T. Roubíček, Explicit characterization of Lp-Young measures. J. Math. Anal. Appl. 198 (1996) 830–843. [CrossRef] [MathSciNet]
  24. M. Kružík and T. Roubíček, On the measures of DiPerna and Majda. Mathematica Bohemica 122 (1997) 383–399. [MathSciNet]
  25. M. Kružík and T. Roubíček, Optimization problems with concentration and oscillation effects: relaxation theory and numerical approximation. Numer. Funct. Anal. Optim. 20 (1999) 511–530. [CrossRef] [MathSciNet]
  26. C. Licht, G. Michaille and S. Pagano, A model of elastic adhesive bonded joints through oscillation-concentration measures. J. Math. Pures Appl. 87 (2007) 343–365. [CrossRef] [MathSciNet]
  27. P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1–28. [CrossRef] [MathSciNet]
  28. C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).
  29. S. Müller, Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412 (1990) 20–34. [MathSciNet]
  30. S. Müller, Variational models for microstructure and phase transisions. Lect. Notes Math. 1713 (1999) 85–210. [CrossRef]
  31. P. Pedregal, Relaxation in ferromagnetism: the rigid case, J. Nonlinear Sci. 4 (1994) 105–125.
  32. P. Pedregal, Parametrized Measures and Variational Principles. Birkäuser, Basel (1997).
  33. T. Roubíček, Relaxation in Optimization Theory and Variational Calculus. W. de Gruyter, Berlin (1997).
  34. M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Comm. Partial Diff. Eq. 7 (1982) 959–1000. [CrossRef] [MathSciNet]
  35. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, R.J. Knops Ed., Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco (1979).
  36. L. Tartar, Mathematical tools for studying oscillations and concentrations: From Young measures to H-measures and their variants, in Multiscale problems in science and technology. Challenges to mathematical analysis and perspectives, N. Antonič, C.J. Van Duijin and W. Jager Eds., Proceedings of the conference on multiscale problems in science and technology, held in Dubrovnik, Croatia, September 3–9, 2000, Springer, Berlin (2002).
  37. M. Valadier, Young measures, in Methods of Nonconvex Analysis, A. Cellina Ed., Lect. Notes Math. 1446, Springer, Berlin (1990) 152–188.
  38. J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972).
  39. L.C. Young, Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937) 212–234.