Free access
Issue
ESAIM: COCV
Volume 16, Number 3, July-September 2010
Page(s) 618 - 634
DOI http://dx.doi.org/10.1051/cocv/2009023
Published online 31 July 2009
  1. L. Afraites, M. Dambrine, K. Eppler and K. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discret. Contin. Dyn. Syst. - série B 8 (2007) 389–416. [CrossRef]
  2. L. Afraites, M. Dambrine and D. Kateb, On second order shape optimization methods for electrical impedance tomography. SIAM J. Control Optim. 47 (2008) 1556–1590. [CrossRef] [MathSciNet]
  3. G. Allaire and F. Jouve, A level-set method for vibration and multiple loads in structural optimization. Comput. Methods Appl. Mech. Engrg. 194 (2005) 3269–3290. [CrossRef] [MathSciNet]
  4. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [MathSciNet]
  5. P. Bernardoni, Outils et méthode de conception de structures mécaniques à déformations et actionnements répartis. Ph.D. Thesis, Université Paris VI, France (2004).
  6. D. Bucur, Do optimal shapes exist? Milan J. Math. 75 (2007) 379–398. [CrossRef] [MathSciNet]
  7. P. Cardaliaguet and O. Ley, Some flows in shape optimization. Arch. Ration. Mech. Anal. 183 (2007) 21–58. [CrossRef] [MathSciNet]
  8. P. Cardaliaguet and O. Ley, On the energy of a flow arising in shape optimization. Interfaces Free Bound. 10 (2008) 221–241.
  9. M. Dambrine, About the variations of the shape Hessian and sufficient conditions of stability for critical shapes. Revista Real Academia Ciencias-RACSAM 96 (2002) 95–121.
  10. M. Dambrine and M. Pierre, About stability of equilibrium shapes. ESAIM: M2AN 34 (2000) 811–834. [CrossRef] [EDP Sciences]
  11. F. de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343–367. [CrossRef] [MathSciNet]
  12. M. Delfour and J.P. Zolesio, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM (2001).
  13. J. Descloux, Stability of the solutions of the bidimensional magnetic shaping problem in abscence of surface tension. Eur. J. Mech. B Fluid. 10 (1991) 513–526.
  14. K. Eppler and H. Harbrecht, A regularized newton method in electrical impedance tomography using hessian information. Control Cybern. 34 (2005) 203–225.
  15. K. Eppler, H. Harbrecht and R. Schneider, On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 61–83. [CrossRef] [MathSciNet]
  16. A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques et Applications 48. Springer (2005).
  17. F. Hettlich and W. Rundell, A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37 (1999) 587–620. [CrossRef]
  18. V. Isakov, Inverse problems for partial differential equations, Applied Mathematical Sciences 127. Springer (2006).
  19. A. Kisch, The domain derivative and two applications in inverse scattering theory. Inverse Problems 9 (1993) 81–96. [CrossRef] [MathSciNet]
  20. S. Osher and J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet]