Free access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 1077 - 1093
DOI http://dx.doi.org/10.1051/cocv/2009036
Published online 25 August 2009
  1. A. Cheng and K. Morris, Well-posedness of boundary control systems. SIAM J. Control Optim. 42 (2003) 1244–1265. [CrossRef] [MathSciNet]
  2. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York, USA (1995).
  3. R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1-d Flexible Multi-structures, Matématiques & Applications 50. Springer-Verlag (2006).
  4. K.-J. Engel, M. Kramar Fijavž, R. Nagel, E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. [CrossRef] [MathSciNet]
  5. B.-Z. Guo and Z.-C. Shao, Regularity of a Schödinger equation with Dirichlet control and collocated observation. Syst. Contr. Lett. 54 (2005) 1135–1142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  6. B.-Z. Guo and Z.-C. Shao, Regularity of an Euler-Bernoulli equation with Neumann control and collocated observation. J. Dyn. Contr. Syst. 12 (2006) 405–418. [CrossRef]
  7. B.-Z. Guo and Z.-X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation. SIAM J. Control Optim. 44 (2005) 1598–1613. [CrossRef] [MathSciNet]
  8. B.-Z. Guo and Z.-X. Zhang, Well-posedness and regularity for an Euler-Bernoulli plate with variable coefficients and boundary control and observation. MCSS 19 (2007) 337–360.
  9. B.-Z. Guo and Z.-X. Zhang, On the well-posedness and regularity of the wave equation with variable coefficients. ESAIM: COCV 13 (2007) 776–792. [CrossRef] [EDP Sciences]
  10. B.-Z. Guo and Z.-X. Zhang, Well-posedness of systems of linear elasticity with Dirichlet boundary control and observation. SIAM J. Control Optim. 48 (2009) 2139–2167. [CrossRef] [MathSciNet]
  11. T. Kato, Perturbation Theory for Linear Operators. Corrected printing of the second edition, Springer-Verlag, Berlin, Germany (1980).
  12. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations I, Encyclopedia of Mathematics and its Applications 74. Cambridge University Press (2000).
  13. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations II, Encyclopedia of Mathematics and its Applications 75. Cambridge University Press (2000).
  14. Y. Le Gorrec, B.M. Maschke, H. Zwart and J.A. Villegas, Dissipative boundary control systems with application to distributed parameters reactors, in Proc. IEEE International Conference on Control Applications, Munich, Germany, October 4–6 (2006) 668–673.
  15. Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM J. Control Optim. 44 (2005) 1864–1892. A more detailed version is available at www.math.utwente.nl/publications, Memorandum No. 1730 (2004). [CrossRef] [MathSciNet]
  16. Z.-H. Luo, B.-Z. Guo and O. Morgul, Stability and Stabilization of Infinite-Dimensional Systems with Applications. Springer-Verlag (1999).
  17. A. Macchelli and C. Melchiorri, Modeling and control of the Timoshenko beam, The distributed port Hamiltonian approach. SIAM J. Control Optim. 43 (2004) 743–767. [CrossRef] [MathSciNet]
  18. B. Maschke and A.J. van der Schaft,Compositional modelling of distributed-parameter systems, in Advanced Topics in Control Systems Theory – Lecture Notes from FAP 2004, Lecture Notes in Control and Information Sciences, F. Lamnabhi-Lagarrigue, A. Loría and E. Panteley Eds., Springer (2005) 115–154.
  19. J. Malinen, Conservatively of time-flow invertible and boundary control systems. Research Report A479, Institute of Mathematics, Helsinki University of Technology, Finland (2004). See also Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC'05).
  20. R.S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations. Trans. Amer. Math. Soc. 90 (1959) 193–254. [MathSciNet]
  21. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Review 20 (1978) 639–739. [CrossRef] [MathSciNet]
  22. A.J. van der Schaft and B.M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow. J. Geometry Physics 42 (2002) 166–174. [CrossRef] [MathSciNet]
  23. O. Staffans, Well-posed Linear Systems, Encyclopedia of Mathematics and its Applications 103. Cambridge University Press (2005).
  24. M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher (2009).
  25. J.A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems. Ph.D. Thesis, University of Twente, The Netherlands (2007). Available at http://doc.utwente.nl.
  26. G. Weiss, Regular linear systems with feedback. Math. Control Signals Syst. 7 (1994) 23–57. [CrossRef] [MathSciNet]
  27. G. Weiss and R.F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control. IEEE Trans. Automat. Contr. 53 (2008) 643–654. [CrossRef]
  28. H. Zwart, Transfer functions for infinite-dimensional systems. Syst. Contr. Lett. 52 (2004) 247–255. [CrossRef]
  29. H. Zwart, Y. Le Gorrec, B.M.J. Maschke and J.A. Villegas, Well-posedness and regularity for a class of hyperbolic boundary control systems, in Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006) 1379–1883.