 A. Cheng and K. Morris, Wellposedness of boundary control systems. SIAM J. Control Optim. 42 (2003) 1244–1265. [CrossRef] [MathSciNet]
 R.F. Curtain and H.J. Zwart, An Introduction to InfiniteDimensional Linear Systems Theory. SpringerVerlag, New York, USA (1995).
 R. Dáger and E. Zuazua, Wave Propagation, Observation and Control in 1d Flexible Multistructures, Matématiques & Applications 50. SpringerVerlag (2006).
 K.J. Engel, M. Kramar Fijavž, R. Nagel, E. Sikolya, Vertex control of flows in networks. Netw. Heterog. Media 3 (2008) 709–722. [CrossRef] [MathSciNet]
 B.Z. Guo and Z.C. Shao, Regularity of a Schödinger equation with Dirichlet control and collocated observation. Syst. Contr. Lett. 54 (2005) 1135–1142. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
 B.Z. Guo and Z.C. Shao, Regularity of an EulerBernoulli equation with Neumann control and collocated observation. J. Dyn. Contr. Syst. 12 (2006) 405–418. [CrossRef]
 B.Z. Guo and Z.X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation. SIAM J. Control Optim. 44 (2005) 1598–1613. [CrossRef] [MathSciNet]
 B.Z. Guo and Z.X. Zhang, Wellposedness and regularity for an EulerBernoulli plate with variable coefficients and boundary control and observation. MCSS 19 (2007) 337–360.
 B.Z. Guo and Z.X. Zhang, On the wellposedness and regularity of the wave equation with variable coefficients. ESAIM: COCV 13 (2007) 776–792. [CrossRef] [EDP Sciences]
 B.Z. Guo and Z.X. Zhang, Wellposedness of systems of linear elasticity with Dirichlet boundary control and observation. SIAM J. Control Optim. 48 (2009) 2139–2167. [CrossRef] [MathSciNet]
 T. Kato, Perturbation Theory for Linear Operators. Corrected printing of the second edition, SpringerVerlag, Berlin, Germany (1980).
 I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations I, Encyclopedia of Mathematics and its Applications 74. Cambridge University Press (2000).
 I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations II, Encyclopedia of Mathematics and its Applications 75. Cambridge University Press (2000).
 Y. Le Gorrec, B.M. Maschke, H. Zwart and J.A. Villegas, Dissipative boundary control systems with application to distributed parameters reactors, in Proc. IEEE International Conference on Control Applications, Munich, Germany, October 4–6 (2006) 668–673.
 Y. Le Gorrec, H. Zwart and B. Maschke, Dirac structures and boundary control systems associated with skewsymmetric differential operators. SIAM J. Control Optim. 44 (2005) 1864–1892. A more detailed version is available at www.math.utwente.nl/publications, Memorandum No. 1730 (2004). [CrossRef] [MathSciNet]
 Z.H. Luo, B.Z. Guo and O. Morgul, Stability and Stabilization of InfiniteDimensional Systems with Applications. SpringerVerlag (1999).
 A. Macchelli and C. Melchiorri, Modeling and control of the Timoshenko beam, The distributed port Hamiltonian approach. SIAM J. Control Optim. 43 (2004) 743–767. [CrossRef] [MathSciNet]
 B. Maschke and A.J. van der Schaft,Compositional modelling of distributedparameter systems, in Advanced Topics in Control Systems Theory – Lecture Notes from FAP 2004, Lecture Notes in Control and Information Sciences, F. LamnabhiLagarrigue, A. Loría and E. Panteley Eds., Springer (2005) 115–154.
 J. Malinen, Conservatively of timeflow invertible and boundary control systems. Research Report A479, Institute of Mathematics, Helsinki University of Technology, Finland (2004). See also Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDCECC'05).
 R.S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations. Trans. Amer. Math. Soc. 90 (1959) 193–254. [MathSciNet]
 D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Review 20 (1978) 639–739. [CrossRef] [MathSciNet]
 A.J. van der Schaft and B.M. Maschke, Hamiltonian formulation of distributed parameter systems with boundary energy flow. J. Geometry Physics 42 (2002) 166–174. [CrossRef] [MathSciNet]
 O. Staffans, Wellposed Linear Systems, Encyclopedia of Mathematics and its Applications 103. Cambridge University Press (2005).
 M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts. Basler Lehrbücher (2009).
 J.A. Villegas, A PortHamiltonian Approach to Distributed Parameter Systems. Ph.D. Thesis, University of Twente, The Netherlands (2007). Available at http://doc.utwente.nl.
 G. Weiss, Regular linear systems with feedback. Math. Control Signals Syst. 7 (1994) 23–57. [CrossRef] [MathSciNet]
 G. Weiss and R.F. Curtain, Exponential stabilization of a Rayleigh beam using collocated control. IEEE Trans. Automat. Contr. 53 (2008) 643–654. [CrossRef]
 H. Zwart, Transfer functions for infinitedimensional systems. Syst. Contr. Lett. 52 (2004) 247–255. [CrossRef]
 H. Zwart, Y. Le Gorrec, B.M.J. Maschke and J.A. Villegas, Wellposedness and regularity for a class of hyperbolic boundary control systems, in Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan (2006) 1379–1883.
Free access
Issue 
ESAIM: COCV
Volume 16, Number 4, OctoberDecember 2010



Page(s)  1077  1093  
DOI  http://dx.doi.org/10.1051/cocv/2009036  
Published online  25 August 2009 