Free access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 1002 - 1017
DOI http://dx.doi.org/10.1051/cocv/2009030
Published online 11 August 2009
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281.
  2. E. Acerbi and N. Fusco, Regularity of minimizers of non-quadratic functionals: the case Formula . J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet]
  3. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  4. M. Carozza and A. Passarelli di Napoli, A regularity theorem for minimizers of quasiconvex integrals: the case Formula . Proc. R. Math. Soc. Edinb. A 126 (1996) 1181–1199.
  5. M. Carozza and A. Passarelli di Napoli, Model problems from nonlinear elasticity: partial regularity results. ESAIM: COCV 13 (2007) 120–134. [CrossRef] [EDP Sciences]
  6. M. Carozza, N. Fusco and R. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali di matematica pura e applicata (IV) CLXXV (1998) 141–164.
  7. G. Cupini, N. Fusco and R. Petti, Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578–597. [CrossRef] [MathSciNet]
  8. E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. It. 1 (1968) 135–137.
  9. L. Esposito, F. Leonetti and G. Mingione, Higher integrability for minimizers of integral functionals with Formula growth. J. Differ. Equ. 157 (1999) 414–438. [CrossRef]
  10. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with Formula growth. Forum Math. 14 (2002) 245–272. [CrossRef] [MathSciNet]
  11. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with Formula growth. J. Differ. Equ. 204 (2004) 5–55.
  12. L.C. Evans, Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Ration. Mech. Anal. 95 (1984) 227–252.
  13. L.C. Evans and R.F. Gariepy, Blow-up, compactness and partial regularity in the Calculus of Variations. Indiana Univ. Math. J. 36 (1987) 361–371. [CrossRef] [MathSciNet]
  14. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1997) 463–499.
  15. I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV 7 (2002) 69–95. [CrossRef] [EDP Sciences]
  16. M. Giaquinta and G. Modica, Remarks on the regularity of minimizers of certain degenerate functionals. Manuscripta Math. 47 (1986) 55–99. [CrossRef] [MathSciNet]
  17. E. Giusti, Direct methods in the calculus of variations. World Scientific, River Edge, USA (2003).
  18. O. John, J. Malý and J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolin. 30 (1989) 33–43.
  19. J. Kristensen and G. Mingione, Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris Ser. I Math. 340 (2005) 93–98.
  20. J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331–398. [CrossRef] [MathSciNet]
  21. G. Mingione, The singular set of solutions to non differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003) 287–301. [CrossRef]
  22. G. Mingione, Bounds for the singular set of solutions to non linear elliptic system. Calc. Var. 18 (2003) 373–400. [CrossRef]
  23. G. Mingione, Regularity of minima: an invitation to the dark side of calculus of variations. Appl. Math. 51 (2006) 355–426. [CrossRef] [MathSciNet]
  24. J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in Theory of nonlinear operators, Proc. Fourth Internat. Summer School, Acad. Sci., Berlin (1975) 197–206.
  25. A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals. Ric. di Matem. XLVIII (1994) 379–393.
  26. V. Šverák and X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. 10 (2000) 213–221. [CrossRef]
  27. V. Šverák and X. Yan, Non Lipschitz minimizers of smooth strongly convex variational integrals. Proc. Nat. Acad. Sc. USA 99 (2002) 15269–15276. [CrossRef] [MathSciNet]