Free access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 178 - 189
DOI http://dx.doi.org/10.1051/cocv/2009046
Published online 04 December 2009
  1. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet]
  2. E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001) 121–140.
  3. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002) 213–259. [CrossRef] [MathSciNet]
  4. M. Chipot and L.C. Evans, Linearization at infinity and Lipschitz estimate for certain problems in the Calculus of Variations. Proc. Roy. Soc. Edinburgh Sect. A 102 (1986) 291–303. [MathSciNet]
  5. A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in Nonlinear Analysis, Function Spaces and Applications 6, Acad. Sci. Czech Repub., Prague, Czech Republic (1999) 50–92.
  6. A. Cianchi and N. Fusco, Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math. 507 (1999) 15–36. [CrossRef] [MathSciNet]
  7. M. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54 (2003) 591–616. [CrossRef] [MathSciNet]
  8. L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556. [CrossRef] [MathSciNet]
  9. L. Diening, B. Stroffolini and A. Verde, Regularity of functionals with ϕ-growth. Manuscripta Math. 129 (2009) 449–481. [CrossRef] [MathSciNet]
  10. G. Dolzmann and J. Kristensen, Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22 (2005) 283–301. [CrossRef]
  11. M. Foss, Global regularity for almost minimizers of nonconvex variational problems. Ann. Mat. Pura Appl. 187 (2008) 263–321. [CrossRef] [MathSciNet]
  12. M. Foss, A. Passarelli di Napoli and A. Verde, Global Morrey regularity results for asymptotically convex variational problems. Forum Math. 20 (2008) 921–953. [CrossRef] [MathSciNet]
  13. M. Fuchs, Regularity for a class of variational integrals motivated by nonlinear elasticity. Asymptotic Anal. 9 (1994) 23–38. [MathSciNet]
  14. M. Fuchs, Lipschitz regularity for certain problems from relaxation. Asymptotic Anal. 12 (1996) 145–151. [MathSciNet]
  15. M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55–99. [CrossRef] [MathSciNet]
  16. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63–89. [CrossRef] [MathSciNet]
  17. C. Leone, A. Passarelli di Napoli and A. Verde, Lipschitz regularity for some asymptotically subquadratic problems. Nonlinear Anal. 67 (2007) 1532–1539. [CrossRef] [MathSciNet]
  18. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284.
  19. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Diff. Eq. 90 (1991) 1–30. [CrossRef] [MathSciNet]
  20. P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Pisa 23 (1996) 1–25.
  21. P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth. J. Diff. Eq. 221 (2006) 412–443. [CrossRef]
  22. G.R. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355–426. [CrossRef] [MathSciNet]
  23. A. Passarelli di Napoli and A. Verde, A regularity result for asymptotically convex problems with lower order terms. J. Convex Anal. 15 (2008) 131–148. [MathSciNet]
  24. J.P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 59–73.
  25. M. Ružička and L. Diening, Non-Newtonian fluids and function spaces, in Nonlinear Analysis, Function Spaces and Applications 8, Acad. Sci. Czech Repub., Prague, Czech Republic (2007) 95–143.
  26. K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977) 219–240. [CrossRef] [MathSciNet]