Free access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 86 - 101
DOI http://dx.doi.org/10.1051/cocv/2009038
Published online 09 October 2009
  1. H. Berestycki and P.L. Lions, Nonlinear scalar field equations I. Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983) 313–345. [MathSciNet]
  2. M. Biskup and W. König, Long-time tails in the parabolic Anderson model with bounded potential. Ann. Probab. 29 (2001) 636–682. [CrossRef] [MathSciNet]
  3. A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford, UK (2002).
  4. J.E. Brother and W.P. Ziemer, Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384 (1988) 153–179. [MathSciNet]
  5. C.C. Chen and C.S. Lin, Uniqueness of the ground state solutions of Δu + f(u) = 0 in Formula , n ≥ 3. Comm. Partial Diff. Eq. 16 (1991) 1549–1572. [CrossRef]
  6. C. Cortazar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in Formula with a non-Lipschitzian nonlinearity. Adv. Diff. Eq. 1 (1996) 199–218.
  7. C. Cortazar, M. Elgueta and P. Felmer, Uniqueness of positive solutions of Δu + f(u) = 0 in Formula , N ≥ 3. Arch. Rational Mech. Anal. 142 (1998) 127–141. [CrossRef] [MathSciNet]
  8. J. Gärtner and S.A. Molchanov, Parabolic problems for the Anderson model. I. Intermittency and related topics. Comm. Math. Phys. 132 (1990) 613–655. [CrossRef] [MathSciNet]
  9. W. König, Große Abweichungen, Techniken und Anwendungen. Vorlesungsskript Universität Leipzig, Germany (2006).
  10. M.K. Kwong, Uniqueness of positive solutions of Δu - u +up = 0 in Formula . Arch. Rational Mech. Anal. 105 (1989) 243–266. [MathSciNet]
  11. E.H. Lieb and M. Loss, Analysis, AMS Graduate Studies 14. Second edition, Providence, USA (2001).
  12. P. Pucci, M. García-Huidobro, R. Manásevich and J. Serrin, Qualitative properties of ground states for singular elliptic equations with weights. Ann. Mat. Pura Appl. 185 (2006) 205–243. [CrossRef] [MathSciNet]