Free access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 155 - 177
DOI http://dx.doi.org/10.1051/cocv/2009040
Published online 30 October 2009
  1. F. Bagagiolo, Minimum time for a hybrid system with thermostatic switchings, in Hybrid Systems: Computation and Control, A. Bemporad, A. Bicchi and G. Buttazzo Eds., Lect. Notes Comput. Sci. 4416, Springer-Verlag, Berlin, Germany (2007) 32–45.
  2. F. Bagagiolo and M. Bardi, Singular perturbation of a finite horizon problem with state-space constraints. SIAM J. Contr. Opt. 36 (1998) 2040–2060. [CrossRef]
  3. F. Bagagiolo and D. Bauso, Robust optimality of linear saturated control in uncertain linear network flows, in Decision and Control, 2008, CDC 2008, 47th IEEE Conference (2008) 3676–3681.
  4. M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, USA (1997).
  5. M. Bardi, S. Koike and P. Soravia, Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximation. Discrete Contin. Dyn. Syst. 6 (2000) 361–380. [CrossRef]
  6. D. Bauso, F. Blanchini and R. Pesenti, Robust control policies for multi-inventory systems with average flow constraints. Automatica 42 (2006) 1255–1266. [CrossRef] [MathSciNet]
  7. A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica 38 (2002) 320.
  8. A. Ben Tal and A. Nemirovsky, Robust solutions of uncertain linear programs. Oper. Res. 25 (1998) 1–13. [CrossRef]
  9. D.P. Bertsekas and I. Rhodes, Recursive state estimation for a set-membership description of uncertainty. IEEE Trans. Automatic Control 16 (1971) 117–128. [CrossRef] [MathSciNet]
  10. D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54 (2006) 150–168. [CrossRef] [MathSciNet]
  11. P. Cardialaguet, M. Quincampoix and P. Saint-Pierre, Pursuit differential games with state constraints. SIAM J. Contr. Opt. 39 (2001) 1615–1632. [CrossRef] [MathSciNet]
  12. J. Casti, On the general inverse problem of optimal control theory. J. Optim. Theory Appl. 32 (1980) 491–497. [CrossRef] [MathSciNet]
  13. X. Chen, M. Sim, P. Sun and J. Zhang, A linear-decision based approximation approach to stochastic programming. Oper. Res. 56 (2008) 344–357. [CrossRef] [MathSciNet]
  14. M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487–502. [CrossRef] [MathSciNet]
  15. S. Dharmatti and M. Ramaswamy, Zero-sum differential games involving hybrid controls. J. Optim. Theory Appl. 128 (2006) 75–102. [CrossRef] [MathSciNet]
  16. R.J. Elliot and N.J. Kalton, The existence of value in differential games, Mem. Amer. Math. Soc. 126. AMS, Providence, USA (1972).
  17. L.C. Evans and H. Ishii, Differential games and nonlinear first order PDE on bounded domains. Manuscripta Math. 49 (1984) 109–139. [CrossRef] [MathSciNet]
  18. M. Garavello and P. Soravia, Representation formulas for solutions of HJI equations with discontinuous coefficients and existence of value in differential games. J. Optim. Theory Appl. 130 (2006) 209–229. [CrossRef] [MathSciNet]
  19. S. Koike, On the state constraint problem for differential games. Indiana Univ. Math. J. 44 (1995) 467–487. [MathSciNet]
  20. O. Kostyukova and E. Kostina, Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Math. Program. 107 (2006) 131–153. [CrossRef] [MathSciNet]
  21. V.B. Larin, About the inverse problem of optimal control. Appl. Comput. Math 2 (2003) 90–97. [MathSciNet]
  22. T.T. Lee and G.T. Liaw, The inverse problem of linear optimal control for constant disturbance. Int. J. Control 43 (1986) 233–246. [CrossRef]
  23. P. Soravia, Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51 (2002) 451–477. [MathSciNet]
  24. H.M. Soner, Optimal control problems with state-space constraints I. SIAM J. Contr. Opt. 31 (1986) 132–146. [CrossRef]
  25. A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin, Germany (1996).