Free access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 267 - 292
DOI http://dx.doi.org/10.1051/cocv/2010004
Published online 24 March 2010
  1. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences 87, Control Theory and Optimization II. Springer-Verlag, Berlin, Germany (2004).
  2. E.L. Allgower and K.G. Georg, Introduction to numerical continuation methods, SIAM Classics in Applied Maths 45. Society for Industrial and Applied Mathematics, Philadelphia, USA (2003).
  3. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds. J. Differential Geom. 66 (2004) 377–435. [MathSciNet]
  4. A.G. Bliss, Lectures on the Calculus of Variations. University of Chicago Press, Chicago, USA (1946).
  5. B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal [Theory of the singularities of the input/output mapping and optimality of singular trajectories in the minimal-time problem]. Forum Math. 5 (1993) 111–159. [CrossRef] [MathSciNet]
  6. B. Bonnard and D. Sugny, Time-minimal control of dissipative two-level quantum systems: the integrable case. SIAM J. Control Optim. 48 (2009) 1289–1308. [CrossRef] [MathSciNet]
  7. B. Bonnard and D. Sugny, Geometric optimal control and two-level dissipative quantum systems. Control Cybern. (to appear).
  8. B. Bonnard, L. Faubourg and E. Trélat, Mécanique céleste et contrôle des véhicules spatiaux. Springer, Berlin, Germany (2005).
  9. B. Bonnard, R. Dujol and J.-B. Caillau, Smooth approximations of single-input controlled Keplerian trajectories: homotopies and averaging, in Taming heterogeneity and complexity of embedded control, Proceedings of the Joint CTS-HYCON Workshop on Nonlinear and Hybrid Control, Paris, France (2006) 73–95.
  10. B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control. ESAIM: COCV 13 (2007) 207–236. [CrossRef] [EDP Sciences]
  11. B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Conjugate and cut loci of a two-sphere of revolution with application to optimal control. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009) 1081–1098. [CrossRef] [MathSciNet]
  12. B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: the generic case. IEEE Trans. Automat. Contr. 54 (2009) 2595–2610.
  13. B. Bonnard, O. Cots, N. Shcherbakova and D. Sugny, The energy minimization problem for two-level dissipative quantum systems. J. Math. Phys. (to appear).
  14. U. Boscain and P. Mason, Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys. 47 (2006) 062101. [CrossRef] [MathSciNet]
  15. H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, London, UK (2002).
  16. D. D'Alessandro, Introduction to quantum control and dynamics, Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, USA (2008).
  17. M.P. do Carmo, Riemannian geometry. Birkhauser, Boston, USA (1992).
  18. R. Dujol, Contribution du contrôle orbital des transferts mono-entrée en mécanique spatiale. Ph.D. Thesis, ENSEEIHT-INP, France (2006).
  19. J. Gergaud and T. Haberkorn, Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12 (2006) 294–310. [CrossRef] [EDP Sciences]
  20. T. Haberkhorn, Transfert orbital avec minimisation de la consommation : résolution par homotopie différentielle. Ph.D. Thesis, ENSEEIHT-INP, France (2004).
  21. N. Khaneja, R. Brockett and S.J. Glaser, Time optimal control of spin systems. Phys. Rev. A. 63 (2001) 032308.
  22. N. Khaneja, S.J. Glaser and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A (3) 65 (2002) 032301. [CrossRef] [MathSciNet]
  23. D.F. Lawden, Elliptic functions and applications. Springer Verlag, New York, USA (1989).
  24. H. Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach. SIAM J. Control Optim. 41 (2002) 380–403. [CrossRef] [MathSciNet]
  25. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. L.W. Neustadt Interscience Publishers, John Wiley & Sons, Inc., New York-London (1962).
  26. A. Sarychev, The index of the second variation of a control system. Math. Sbornik 41 (1982) 383–401. [CrossRef]
  27. T. Schulte-Herbrüggen, A.K. Spörl, R. Marx, N. Khaneja, J.M. Myers, A.F. Fahmy and S.J. Glaser, Quantum computing implemented via optimal control: Theory and application to spin and pseudo-spin systems, in Lectures on quantum information, D. Bruß and G. Leuchs Eds., Wiley-VCH (2006) 481.
  28. T. Vieillard, F. Chaussard, D. Sugny, B. Lavorel and O. Faucher, Field-free molecular alignment of CO2 mixtures in presence of collisional relaxation. J. Raman Spec. 39 (2008) 694. [CrossRef]
  29. R. Wu, A. Pechen, H. Rabitz, M. Hsieh and B. Tsou, Control landscapes for observable preparation with open quantum systems. J. Math. Phys. 49 (2008) 022108. [CrossRef] [MathSciNet]