Free access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 722 - 748
DOI http://dx.doi.org/10.1051/cocv/2010020
Published online 23 April 2010
  1. W. Allegretto, C. Mocenni and A. Vicino, Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol. 51 (2005) 367–388. [CrossRef] [MathSciNet] [PubMed]
  2. L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Analysis of a multistate control problem related to food technology. J. Differ. Equ. 245 (2008) 130–153. [CrossRef]
  3. L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349 (2009) 135–155. [CrossRef] [MathSciNet]
  4. N. Arada and J.-P. Raymond, Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9 (2003) 1549–1570. [CrossRef] [MathSciNet]
  5. O. Arino, K. Boushaba and A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. Real World Appl. 1 (2000) 69–87. [CrossRef] [MathSciNet]
  6. R.P. Canale, Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor (1976).
  7. P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350–370. [CrossRef] [EDP Sciences]
  8. E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993–1006. [CrossRef] [MathSciNet]
  9. F. Cioffi and F. Gallerano, Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Appl. Math. Model. 25 (2001) 385–426. [CrossRef]
  10. M. Drago, B. Cescon and L. Iovenitti, A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model. 145 (2001) 17–34. [CrossRef]
  11. M. Gugat and G. Leugering, L-norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV 14 (2008) 254–283. [CrossRef] [EDP Sciences] [MathSciNet]
  12. S. Li and G. Wang, The time optimal control of the Boussinesq equations. Numer. Funct. Anal. Optim. 24 (2003) 163–180. [CrossRef] [MathSciNet]
  13. F. Lunardini and G. Di Cola, Oxygen dynamics in coastal and lagoon ecosystems. Math. Comput. Model. 31 (2000) 135–141. [CrossRef]
  14. K. Park, H.-S. Jung, H.-S. Kim and S.-M. Ahn, Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 60 (2005) 171–193. [CrossRef] [PubMed]
  15. J.P. Raymond and H. Zidani, Pontryagin's principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375–402. [CrossRef] [MathSciNet]
  16. J.P. Raymond and H. Zidani, Time optimal problems with boundary controls. Differ. Integr. Equat. 13 (2000) 1039–1072.
  17. T. Roubíček, Nonlinear partial differential equations with applications. Birkhäuser-Verlag, Basel (2005).
  18. G. Wang, The existence of time optimal control of semilinear parabolic equations. Syst. Control Lett. 53 (2004) 171–175. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  19. L. Wang and G. Wang, The optimal time control of a phase-field system. SIAM J. Control Optim. 42 (2003) 1483–1508. [CrossRef] [MathSciNet]
  20. Y. Yamashiki, M. Matsumoto, T. Tezuka, S. Matsui and M. Kumagai, Three-dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits. Hydrol. Proc. 17 (2003) 2957–2973. [CrossRef]
  21. E. Zeidler, Nonlinear Functional Analysis and Its Applications – Part 3: Variational Methods and Optimization. Springer-Verlag, Berlin (1985).